CURSO:

LECTURA DE PLANOS.

ARQUITECTURA.

ESTRUCTURAS.

SANITARIAS.

ELECTRICAS.

NOMBRE: _____________________________
GERENCIA DE FORMACION PROFESIONAL

MANUAL DEL PARTICIPANTE

CURSO

LECTURA DE PLANOS DE ARQUITECTURA

INFORMACION TECNOLOGICA DIRIGIDO A PARTICIPANTES DEL CURSO DE LECTURA DE PLANOS DE ARQUITECTURA

LIMA ABRIL DEL 2008
GERENTE DE FORMACION PROFESIONAL
Arq. MARIA DEL CARMEN DELGADO RAZURI

EQUIPO DE TRABAJO
ELABORACION : Ing. Max Torres Rojas
COORDINACION Y REVISION : Ing. Patricia Mestanza Acosta
INDICE

Presentación

Generalidades

01. Plano

02. El membrete

03. Plano arquitectónico

04. Escala

05. El escalímetro

06. El acotamiento

07. Expresión arquitectónica

08. Simbología de trazos

09. Cuadro de vanos

10. Cuadro de acabados

11. Plano de Ubicación

12. Plano de Localización

13. Plano de Planta

14. Plano de Corte

15. Plano de Elevaciones

16. Plano de Detalles

Glosario
PRESENTACIÓN

El presente documento denominado "Manual de Lectura de Planos de Arquitectura" se ha elaborado de acuerdo al Programa Curricular del curso de igual denominación.

El propósito de este Manual es el de servir como guía en el proceso de aprendizaje del participante; así como de los docentes a cargo del desarrollo del curso, facilitando la planificación de los contenidos y de su ejecución ordenada y secuencial.

Es necesario tener presente que la información que contiene este Manual, es únicamente para el uso del SENCICO como material de estudio o de consulta, por lo que está prohibida su reproducción parcial o total por cualquier medio.

Cabe señalar que el Manual como todo documento, será motivo de reajustes permanentes con la inclusión de temas complementarios a los existentes o de nuevos.

En tal sentido los aportes y sugerencias de los usuarios serán recibidas con el reconocimiento de la Gerencia de Formación Profesional.

GERENCIA DE FORMACION PROFESIONAL
GENERALIDADES

El presente Proyecto contempla el diseño de Arquitectura para una edificación destinada a Vivienda Unifamiliar que consta de tres niveles conforme lo exige el Reglamento Nacional de Edificaciones en sus Normas: A-010 y A-020.

El área del terreno es de 288.00 m². y el área construida total es de 354.313 m²., y corresponde a cada piso las siguientes áreas construidas:
Primer piso: 108.958 m².
Segundo piso: 140.385 m².
Tercer piso: 104.970 m².

El diseño arquitectónico tiene la siguiente distribución de ambientes:

Primer piso: Ingreso, car port, jardín, sala, comedor, terraza, estudio, hall, escalera que lleva al segundo piso, baño, jardín interior, cocina, baño, estar, dormitorio, jardín interior, escalera auxiliar que lleva al tercer piso.
Segundo piso: Escalera que viene del primer piso y lleva al tercer piso, estar, baño, dormitorio 1, dormitorio 2, baño, dormitorio principal, walk in closet, baño, cuarto de juegos, balcón.
Tercer piso: Escalera que viene del segundo piso, estar, cuarto de costura, baño, sala de usos múltiples, baño, balcón, lavandería, depósito, patio.

Los niveles de los pisos son los que se indican a continuación:
Primer nivel: +0.15 m.
Segundo nivel: +2.85 m
Tercer nivel: +5.55 m.
Según la Ley Nº 27157 los planos de arquitectura deben contener:

Plantas, cortes y elevaciones, a nivel de plano de obra, con ejes de trazo y replanteo, debidamente acotados, a escala no menor de 1/75.

La planta del primer piso deberá contener cotas de nivel en los puntos notables de la poligonal del terreno y curvas de nivel en el caso de terrenos con pendientes mayores del 6%, así como el perfil del frente de las edificaciones colindantes hasta 1.50 m. a cada lado del inmueble.

En las elevaciones deberán acotarse las alturas de los inmuebles vecinos.

De existir escaleras, su desarrollo deberá aparecer en los cortes.

Se incluirá las especificaciones de los vanos, ya sea en las plantas o en un cuadro de vanos.

De tratarse de proyectos de gran magnitud, los planos de obra deberán ser fraccionados, en cuyo caso se presentará, además, un plano de conjunto a escala conveniente, con la codificación de los planos fraccionados.

Podrá aceptarse la escala 1/100, siempre y cuando se lean perfectamente los planos.
Según el Reglamento Nacional de Edificaciones el proyecto de arquitectura para edificaciones debe contener la siguiente información:
 a) Plano de localización y ubicación.
 b) Planos de distribución por niveles.
 c) Planos de elevaciones.
 d) Planos de corte por los elementos de circulación vertical.
 e) Planos de detalles constructivos.
 f) Procedimiento de ejecución de ser necesario.

El plano de localización y ubicación deberá contener lo siguiente:
 a) Información de sección de las vías frente al terreno, distancia a la esquina más cercana, norte magnético, altura y zonificación de los terrenos colindantes, árboles y postes, indicación del número de niveles de la edificación.
 b) Cuadro de áreas y parámetros urbanísticos y edificatorios exigibles para edificar en el predio.

Los planos de distribución por niveles del proyecto de arquitectura deben contener, en lo que sea pertinente, la siguiente información:
 a) Niveles de pisos terminados.
 b) Dimensiones de los ambientes.
 c) Indicación de los materiales de acabados.
 d) Nombre de los ambientes.
 e) Mobiliario fijo.
 f) Ampliación, cuando se trate de dimensiones mínimas o sea necesario para entender el uso.
 g) Ubicación de los tableros eléctricos.

Si se trata de una ampliación o remodelación, los planos deben contener la identificación de la obra nueva y de la obra existente.
1.- PLANOS

Se denomina planos a la representación convencional, pero exacta de un objeto, en nuestro caso específico una edificación.

Los planos representan geométricamente sobre un papel, las diferentes proyecciones, vistas o secciones de una edificación o de alguna de sus partes.

Estas proyecciones están hechas de acuerdo a un tamaño determinado con respecto al edificio en sí, porque el dibujo normalmente es pequeño comparado con el objeto que representa.

Las diversas partes de la edificación no pueden ser dibujadas exactamente con cada uno de sus detalles, por ello se emplean símbolos convencionales, los que en conjunto forman lo que llamamos planos de una edificación.

La finalidad de los planos, es la de brindar la información completa y necesaria, que permita a quienes los lean interpretar el diseño de la edificación, su estilo, su distribución, su sistema estructural y de instalaciones.

El juego de planos de arquitectura está conformado por planos de planta, de cortes, de elevaciones y de detalles.
2.- EL MEMBRETE

Es el elemento gráfico componente de un plano en el que se expresan todas las referencias propias del plano mismo, del proyecto y del proyectista.

El nombre y número de colegiatura del Arquitecto o Ingeniero.

El nombre del propietario, que puede ser una persona natural o jurídica.

El tipo de obra, que puede ser obra nueva, ampliación, remodelación o ampliación y remodelación.

La ubicación o dirección de la obra.

La especialidad del proyecto.

El nombre del dibujante, fecha, escalas y otros datos que se considere conveniente indicar.
UBICACION

| PROVINCIA | : |
| DISTRITO | :
| URBANIZACION | :
| AVENIDA | :
| MANZANA | :
| LOTE | :

| PROPIETARIO | :
| SELLO Y FIRMA | :
| PROFESIONAL | :

| PROYECTO | VIVIENDA UNIFAMILIAR |
| PLANO | U-01 |

<table>
<thead>
<tr>
<th>ESCALA</th>
<th>DIBUJO</th>
<th>FECHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01 DE 01</td>
</tr>
</tbody>
</table>
3.- PROYECTO ARQUITECTÓNICO

Denominamos proyecto arquitectónico al conjunto de planos únicamente de la especialidad de Arquitectura.

Éstos planos serán los parámetros a respetar al momento de diseñar luego las estructuras que sostendrán dicha edificación, así también las instalaciones eléctricas y sanitarias.

En general un proyecto arquitectónico se hace con el objetivo de indicar cómo se deberá construir un edificio, y para mostrar también cual será su aspecto una vez terminada su construcción.

En un proyecto arquitectónico debemos encontrar las informaciones necesarias como dimensiones, proporciones, orientación, las características interiores y exteriores de la edificación, su distribución, el estilo arquitectónico adoptado, tipo de acabados y los detalles de los mismos.

Todo proyecto arquitectónico consta de planos de Ubicación, de Plantas, de Cortes, de Elevaciones y de Detalles.
4.- ESCALAS

Con el nombre de escala se conoce a la magnitud en que hemos reducido o ampliado un objeto real en el dibujo.

Comúnmente es imposible dibujar sobre un plano una edificación o un detalle de esta en su tamaño real.

En el primer caso resultaría demasiado grande y en el segundo demasiado pequeño para poder detallar todos sus elementos.

Para conseguir el objetivo de plasmar en el plano un objeto arquitectónico es necesario en el primer caso reducir proporcionalmente las dimensiones del objeto y en el segundo ampliarlas.

Esta relación de aumento o disminución es lo que se llama escala del dibujo.

Estas escalas son llamadas de proporción, y nos indican la proporción que existe entre el objeto real y el dibujo, por ejemplo la escala de 1/100 ó 1:100 quiere decir que el dibujo tiene un tamaño 100 veces menor que el objeto real.

La escala de 100/1 quiere decir que el dibujo tiene un tamaño 100 veces mayor que el objeto real.

Las escalas más usuales son:

1/100, 1/50, 1/25, 1/20, 1/10 y 1/1.
5.- EL ESCALIMETRO

Los escalímetros son reglas de sección triangular, que tienen en sus caras seis escalas gráficas distintas.

En cada escala gráfica encontramos las unidades gráficas de acuerdo a la proporción empleada. Así tenemos que:

En escala 1/100: 1 cm. = 1.00 m
En escala 1/50: 2 cm. = 1.00 m
En escala 1/25: 4 cm. = 1.00 m
En escala 1/20: 5 cm. = 1.00 m
En escala 1/10: 10 cm. = 1.00 m
En escala 1/1: 100 cm. = 1.00 m

También son empleados para deducir de los planos las medidas reales representadas en ellos a escala.

Si en la obra no se cuenta con escalímetro, se pueden precisar medidas empleando el metro o la cinta metálica.
6.- ACOTAMIENTO

Al acotar un plano de construcción, no se puede proceder de cualquier manera; la información que se representa en el acotado debe disponerse de tal modo que su lectura sea fácil y rápida.

Elementos de una acotación:

a).- Las líneas de referencia son las proyecciones de los vértices de la recta que se desea acotar; su trazado se realizará con líneas finas y continuas.

Las líneas de referencia comienzan a una cierta distancia de los vértices de esa recta; normalmente son perpendiculares a la línea de cota, prolongándose algo más que esta.

b).- Las líneas de cota son aquellas que están comprendidas entre las líneas de referencia y sobre la que se dispone la cota.

Se traza fina y continua.

La cota se sitúa por encima de la línea, procurando que esté centrada respecto a ella.

c).- Los extremos de la línea de cota son las marcas que indican los extremos de la línea de cota.

Se indican mediante una línea de trazo corto y oblicuo, y tienen una inclinación de 45° respecto a la línea de cota.

La cota única corresponde a la acotación de un único segmento.
Las cotas en serie son las que están colocadas en cadena de toda una serie de cotas, referida cada una de ellas a un contorno distinto.

Las cotas en serie pueden considerarse como cotas parciales de una misma línea de cota.

Las cotas en paralelo son las que nacen de un mismo lado y que miden vértices consecutivos de un perímetro.

Se sitúan sobre líneas de cotas paralelas.
7.- EXPRESIÓN ARQUITECTÓNICA

En los planos de arquitectura, al igual que en los de las demás especialidades, se utiliza el lenguaje gráfico constituido esencialmente por líneas y símbolos, concebidos en forma convencional, es decir, que no dan lugar a diferentes interpretaciones, sino a la que se le asignó.

a). Muros y vanos.

b). Puertas.

c). Ventanas.

d). Mampáras.

e). Niveles y desniveles.

f). Escaleras.

g). Muebles.

h). Aparatos sanitarios.
MURO ALTO DE AMBIENTE TECHADO

MURO ALTO DE AMBIENTE SIN TECHO

MURO DE ALFEIZAR

MURO DE PARAPETO

MUROS
SIN TECHO

SIN PISO

PROYECCIONES
PUERTAS

VENTANAS

MAMPARAS
DETALLE DE VENTANA
ESCALA GRÁFICA
DETALLE DE PUERTA
ESCALA GRÁFICA
ESCALERA RECTA

1º TRAMO

2º TRAMO

3º TRAMO
PRIMER TRAMO

SEGUNDO TRAMO

TERCER TRAMO

ESCALERA CARACOL
Nivel de Piso Terminado

Nivel de Jardín

Planta

Nivel de Terreno Natural

Nivel de Techo Terminado

Elevación

Niveles
DORMITORIO

MUEBLES

CAMA DE DOS PLAZAS

CAMA DE UNA PLAZA

COMEDOR DE DIARIO

COMEDOR

MUEBLES
ARTEFACTOS
ELECTRODOMÉSTICOS
INODORO

DUCHA

LAVATORIO

TINA

APARATOS SANITARIOS

LAVADERO DE COCINA

LAVADERO DE ROPA

LAVADEROS
PARRILLA

JARDÍN

CLOSET
8.- SIMBOLOGÍA DE TRAZOS

En los planos vamos a encontrar distintas clases de líneas y cada una de ellas tiene su propio significado.

En general existen dos tipos de líneas: completas o continuas y las interrumpidas o discontinuas, encontrando dentro de cada una de ellas algunas variantes.

La diferencia en las líneas completas o continuas reside en su grosor.

La diferencia en las líneas interrumpidas reside en que pueden ser de puntos, de rayas pequeñas, de rayas y puntos, y también de grosor variable.

Para indicar lo principal y lo visible de un objeto, se usan líneas de espesores medianos y continuos.

Si se desea destacar algo dentro de lo principal se usan líneas más gruesas.

Si se quiere restar importancia a alguna parte dentro de lo principal, se usarán líneas más delgadas.

Si se desea graficar una línea que no es visible por su posición pero que existe en el objeto, y es necesario conocerla para su construcción
Las líneas que no existen en el objeto real, pero que son imprescindibles para su construcción las encontraremos graficadas con líneas interrumpidas pero con trazo más delgado que las delgadas continuas.

Las líneas que indican centros o ejes las encontraremos graficadas con puntos y rayas.

Las líneas que indican los lugares por donde se efectúan los cortes en planta, se dibujan con raya y punto, pero con espesor de trazo más grueso que el de los ejes.

Las distancias, dimensiones o cotas se trazan con líneas delgadas, señalando el inicio y fin de la dimensión con un trazo más grueso.

Para indicar que el dibujo continúa y que una parte de éste se ha omitido, se usa la línea cortada.

Los planos están formados por conjuntos de líneas conectadas entre sí, logrando expresar lo que se quiere representar.
ELEVACIÓN

LÍNEA DE CORTE

LÍNEA DE PROYECCIÓN

ELEMENTO PRINCIPAL

ELEMENTO SECUNDARIO

SIMBOLOGÍA
9.- CUADRO DE VANOS

Es una expresión gráfica donde se indican las dimensiones exactas de los vanos de puertas, ventanas, mampáras o cualquier otra abertura en los muros que representen un vano.

En este cuadro se anota el tipo de vano, el ancho del vano, la altura del vano, la altura del alfeizar y cualquier otra información que se desea dar.
CUADRO DE VANOS

<table>
<thead>
<tr>
<th>TIPO</th>
<th>ANCHO</th>
<th>ALTURA</th>
<th>ALFEIZAR</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-1</td>
<td>0.25</td>
<td>1.20</td>
<td>0.60</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-1'</td>
<td>1.20</td>
<td>1.30</td>
<td>1.10</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-2</td>
<td>2.30</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-3</td>
<td>1.40</td>
<td>0.30</td>
<td>2.20</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-4</td>
<td>3.80</td>
<td>2.00</td>
<td>0.30</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-5</td>
<td>2.40</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-6</td>
<td>1.20</td>
<td>0.30</td>
<td>2.20</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-7</td>
<td>1.70</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-8</td>
<td>1.20</td>
<td>0.30</td>
<td>2.20</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-9</td>
<td>0.80</td>
<td>0.50</td>
<td>1.80</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-10</td>
<td>1.70</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-11</td>
<td>3.60</td>
<td>2.30</td>
<td>A NIVEL DE PISO</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-12</td>
<td>2.30</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-13</td>
<td>1.00</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-14</td>
<td>1.50</td>
<td>0.30</td>
<td>2.20</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>V-15</td>
<td>1.55</td>
<td>1.40</td>
<td>0.90</td>
<td>VIDRIO</td>
</tr>
</tbody>
</table>

PUERTAS

CUADRO DE VANOS

<table>
<thead>
<tr>
<th>TIPO</th>
<th>ANCHO</th>
<th>ALTURA</th>
<th>ALFEIZAR</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>1.20</td>
<td>2.15</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>P-1'</td>
<td>3.50</td>
<td>2.20</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>P-2</td>
<td>0.35/1.00/0.35</td>
<td>2.30/2.10/2.30</td>
<td>—</td>
<td>MADERA - VIDRIO</td>
</tr>
<tr>
<td>P-3</td>
<td>0.90</td>
<td>2.10</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>P-4</td>
<td>0.80</td>
<td>2.10</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>P-5</td>
<td>0.70</td>
<td>2.10</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>P-6</td>
<td>1.00</td>
<td>2.10</td>
<td>—</td>
<td>MADERA</td>
</tr>
<tr>
<td>M-1</td>
<td>1.90</td>
<td>2.10</td>
<td>—</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>M-2</td>
<td>1.70</td>
<td>2.10</td>
<td>—</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>M-3</td>
<td>2.30</td>
<td>2.10</td>
<td>—</td>
<td>VIDRIO</td>
</tr>
<tr>
<td>M-4</td>
<td>1.90</td>
<td>2.10</td>
<td>—</td>
<td>VIDRIO</td>
</tr>
</tbody>
</table>

VENTANAS
10.- CUADRO DE ACABADOS

Es una expresión gráfica donde se indican los tipos de acabados indicando los materiales de construcción que se deben usar.

a). Pisos interiores.
b). Pisos exteriores.
c). Muros interiores.
d). Muros exteriores.
e). Cielos rasos.
f). Falsos cielos rasos.
g). Escaleras.
h). Reposteros.
11.- PLANO DE UBICACIÓN

Es el plano que nos permite ubicar la edificación mostrándonos su relación con los elementos de su entorno urbano.

La escala que se usa es la 1/500 o 1/200.

El Plano de Ubicación contiene el cuadro normativo donde se compara los parámetros urbanísticos y edificatorios según el Reglamento nacional de edificaciones con los parámetros del proyecto.

También contiene el cuadro de áreas, donde se indican las áreas construidas en cada piso o nivel además el área del terreno donde se construirá la edificación y el área construida total.

Las dimensiones del lote y la distancia del lote a la esquina más cercana, los nombres de las manzanas, los nombres de las vías de acceso al lote y el corte de la vía contigua al lote.

Se debe indicar en el lote el número de pisos con achurados en distintas direcciones.

Y por último se debe indicar el norte magnético.
12.- PLANO DE LOCALIZACION

Es el plano que nos muestra la distribución de lotes, vías peatonales, vías vehiculares, áreas de recreación y demás elementos que constituyen un asentamiento urbano.

La escala que se usa es la de 1/10000 o 1/5000.

Se debe indicar el número del lote y la denominación de la manzana.
ESQUEMA DE LOCALIZACION
CUADRO NORMATIVO

<table>
<thead>
<tr>
<th>PARAMETROS</th>
<th>R.N.C.</th>
<th>PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>USOS</td>
<td>VIV. UNIFAMILIAR</td>
<td>VIV. UNIFAMILIAR</td>
</tr>
<tr>
<td>DENSIDAD NETA</td>
<td>500 Hab/Ha</td>
<td>428 Hab/Ha</td>
</tr>
<tr>
<td>COEFICIENTE DE EDIFICACION</td>
<td>1.8</td>
<td>1.23</td>
</tr>
<tr>
<td>AREA LIBRE</td>
<td>30%</td>
<td>48.74%</td>
</tr>
<tr>
<td>ALTURA MAXIMA</td>
<td>3 PISOS</td>
<td>3 PISOS</td>
</tr>
<tr>
<td>RETIRO MINIMO FRONTAL</td>
<td>3.00 ml</td>
<td>20.00 ml</td>
</tr>
<tr>
<td>ESTACIONAMIENTO</td>
<td>1 ESTACIONAMIENTO</td>
<td>3 ESTACIONAMIENTO</td>
</tr>
</tbody>
</table>

CUADRO DE AREAS (m²)

<table>
<thead>
<tr>
<th>AREAS</th>
<th>PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMER PISO</td>
<td>108.958 m²</td>
<td>108.958 m²</td>
</tr>
<tr>
<td>SEGUNDO PISO</td>
<td>140.385 m²</td>
<td>140.385 m²</td>
</tr>
<tr>
<td>TERCER PISO</td>
<td>104.97 m²</td>
<td>104.97 m²</td>
</tr>
<tr>
<td>AREA DEL TERRENO</td>
<td>288.00 m²</td>
<td>288.00 m²</td>
</tr>
<tr>
<td>AREA LIBRE</td>
<td>140.377 m²</td>
<td>140.377 m²</td>
</tr>
<tr>
<td>AREA CONSTRUIDA</td>
<td>354.313 m²</td>
<td>354.313 m²</td>
</tr>
</tbody>
</table>
SECCIÓN DE VÍAS

AREA TECHADA
PRIMER NIVEL

AREA TECHADA
SEGUNDO NIVEL

AREA TECHADA
TERCER NIVEL

SIMBOLOGÍA
13.- PLANO DE PLANTA

Es la representación gráfica de una vista de plano de corte horizontal en una edificación, por niveles.

En el se distinguen la distribución de espacios, las medidas, proporciones, equipamiento, ubicación de los elementos arquitectónicos y constructivos en base a símbolos convencionales.

Se dibuja a una escala de 1/50.
PLANTA PRIMER PISO
ESC. 1/50
14.- PLANO DE CORTES

Es la representación gráfica de una vista de plano de corte vertical en una edificación.

Su finalidad es la de distinguir básicamente las alturas y niveles de los diferentes elementos arquitectónicos y constructivos en el interior.

Se dibuja a una escala de 1/50.
15.- PLANO DE ELEVACIONES

Es la representación gráfica de una vista exterior en plano vertical.

En el se indican el volumen, las alturas y los acabados de las edificaciones.

Si la edificación estuviera en una esquina debe tener dos planos de elevación, una por cada lado que colinda con la vía.

Se dibuja a una escala de 1/50.
CORTES C - C'

ESC. 1/50

N.P.T. +0.00
CART-PORT
16.- PLANO DE DETALLES

Es el plano en el que se grafican los elementos constructivos y acabados más importantes mostrando sus características en una escala mayor.

Se realizan detalles de carpintería de madera o metálica.

Generalmente se representan en escalas 1/25, 1/20 y 1/10.

Se dibuja a diferentes escalas como: 1/25, 1/20, 1/10 y 1/5.
GLOSSARIO

ALEROS.- Parte del techo que sobresale de un muro o elemento de soporte.

ALFEIZAR.- Muro debajo de la ventana.

ARQUITECTURA.- Arte y técnica de proyectar y construir edificios, según reglas, técnicas y cánones estéticos determinados.

AZOTEA.- Es el nivel accesible encima del techo del último nivel techado.

FACHADA.- Paramento exterior de una edificación.

LOTE.- Superficie de terreno urbano delimitado por una poligonal.

MANZANA.- Lote o conjunto de lotes limitados por vías vehiculares, vías peatonales o áreas de servicio público.

PROYECTO.- Información técnica que permite ejecutar una obra de edificación o habilitación urbana.

OCHAVO.- Recorte en chaflán en el lote en esquina de dos vías de circulación vehicular.

VIVIENDA.- Edificación independiente o parte de una edificación multifamiliar, compuesta por ambientes para el uso de una o varias personas, capaz de satisfacer sus necesidades de estar, comer, cocinar e higiene.

VIVIENDA UNIFAMILIAR.- Unidad de vivienda sobre un lote único.
PLANTA DEL TERRENO
ESC. 1/100
PLANTA PRIMER PISO

ESPC. 1/75

SENCICO
G.F.P.

MANUAL DE LECTURA DE PLANOS
DE ARQUITECTURA

LAMINA
03
GERENCIA DE FORMACION PROFESIONAL

MANUAL DEL PARTICIPANTE

CURSO

LECTURA DE PLANOS DE ESTRUCTURAS

INFORMACION TECNOLOGICA DIRIGIDO A PARTICIPANTES DEL CURSO DE LECTURA DE PLANOS DE ESTRUCTURAS

LIMA ABRIL DEL 2008
GERENTE DE FORMACION PROFESIONAL
Arq. MARIA DEL CARMEN DELGADO RAZURI

EQUIPO DE TRABAJO
ELABORACION : Ing. Max Torres Rojas
COORDINACION Y REVISION : Ing. Patricia Mestanza Acosta
ÍNDICE

Presentacion

Generalidades

1. Estructuras
2. Sistemas estructurales
3. Escala
4. Simbología
5. Niveles
6. Cimentaciones
7. Columnas
8. Muros de concreto armado
9. Muros de albañilería
10. Vigas
11. Losas
12. Escaleras
13. Encofrado de techo
14. Especificaciones técnicas
15. Cuadros técnicos

Glosario
PRESENTACIÓN

El presente documento denominado "Manual de Lectura de Planos de Estructuras" se ha elaborado de acuerdo al Programa Curricular del curso de igual denominación.

El propósito de este Manual es el de servir como guía en el proceso de aprendizaje del participante; así como de los docentes a cargo del desarrollo del curso, facilitando la planificación de los contenidos y de su ejecución ordenada y secuencial.

Es necesario tener presente que la información que contiene este Manual, es únicamente para el uso del SENCICO como material de estudio o de consulta, por lo que está prohibida su reproducción parcial o total por cualquier medio.

Cabe señalar que el Manual como todo documento, será motivo de reajustes permanentes con la inclusión de temas complementarios a los existentes o de nuevos.

En tal sentido los aportes y sugerencias de los usuarios serán recibidas con el reconocimiento de la Gerencia de Formación Profesional.

GERENCIA DE FORMACION PROFESIONAL
GENERALIDADES

El presente Proyecto contempla el diseño de las Estructuras para una edificación destinada a Vivienda Unifamiliar que consta de tres niveles conforme lo exige el Reglamento Nacional de Construcciones en sus Normas: E-020, E-030, E-050, E-060 y E-070.

El área del terreno es de 288.00 m². y el área construida total es de 354.313 m²., y corresponde a cada piso las siguientes áreas construidas:

Primer piso: 108.958 m².
Segundo piso: 140.385 m².
Tercer piso: 104.970 m².

El diseño arquitectónico tiene la siguiente distribución de ambientes:

Primer piso: Ingreso, car port, jardín, sala, comedor, terraza, estudio, hall, escalera que lleva al segundo piso, baño, jardín interior, cocina, baño, estar, dormitorio, jardín interior, escalera auxiliar que lleva al tercer piso.

Segundo piso: Escalera que viene del primer piso y lleva al tercer piso, estar, baño, dormitorio 1, dormitorio 2, baño, dormitorio principal, walk in closet, baño, cuarto de juegos, balcón.

Tercer piso: Escalera que viene del segundo piso, estar, cuarto de costura, baño, sala de usos múltiples, baño, balcón, lavandería, depósito, patio.
Los niveles de los pisos son los que se indican a continuación:

Primer nivel: +0.15 m.
Segundo nivel: +2.85 m
Tercer nivel: +5.55 m.

El sistema estructural elegido predominante es el de albañilería confinada ya que existe densidad de muros de soga y de cabeza en las dos direcciones.

En la parte de la sala y comedor se ha colocado un pórtico de un tramo para mejorar la rigidez lateral en esa zona y en la parte posterior e intermedia proyectamos placas de concreto armado también para dotar de rigidez lateral a la estructura y así pueda presentar un mejor comportamiento estructural en los sismos.

Los entrepisos y techo son de losa aligerada de concreto armado a excepción de la zona donde llega y nace la escalera que es losa maciza.

La escalera es metálica en todos sus tramos.

El suelo esta conformado por grava mal graduada con una capacidad portante de 3.00 Kg. /cm²., por lo tanto se han diseñado cimientos corridos en las zonas de muros portantes con columnas de confinamiento, y zapatas donde existen columnas de pórticos para evitar los asentamientos diferenciales y fallas por punzonamiento.

Según la Ley No 27157 los planos de estructuras deben contener:
- Cimentación, indicando la capacidad portante del terreno, los ejes del trazo, la ubicación y dimensiones de las juntas de separación sísmica y/o de construcción.
Elementos estructurales de apoyo: Muros portantes, columnas o pórticos, placas, vigas.
- Planos de techo.
- Elementos estructurales especiales: Escaleras, cisternas, silos, tanques elevados.
- Especificaciones técnicas, incluyendo el coeficiente de carga del terreno.

Los planos de cimentación y de techos serán presentados a las mismas escalas de los planos de arquitectura, y los demás a escalas que permitan su perfecta compresión.

Según el Reglamento Nacional de Edificaciones el proyecto de estructuras para edificaciones debe contener la siguiente información:

a) Plano de Cimentación, con referencia al estudio de suelos
b) Plano de armadura de cada techo, indicando niveles y cargas de diseño
c) Plano de columnas y placas
d) Plano de vigas y detalles
e) Memoria de cálculo
f) Especificaciones técnicas de los materiales estructurales
g) Procedimiento de ejecución, de ser necesario
01.- ESTRUCTURAS

"Disposición y orden de las partes dentro de un todo"

Es decir es un conjunto de elementos estructurales dispuestos y ordenados que tienen la función de transmitir cargas verticales y horizontales al suelo para que la edificación tenga un buen comportamiento estático y dinámico.

Elementos estructurales

Los elementos estructurales principales de toda edificación son.
- Losas aligeradas o macizas de concreto armado.
- Vigas de concreto armado.
- Columnas de concreto armado.
- Elementos de confinamiento de concreto armado.
- Muros de concreto armado o de albañilería.
- Escaleras de concreto armado.
- Cimentaciones corridas o zapatas.

Adicional a estos se tienen otros menos importantes como:
- Parapetos de albañilería.
- Tabiques de albañilería.
- Cisternas de concreto armado.
- Tanques elevados de concreto armado.
02.- SISTEMAS ESTRUCTURALES

CONCRETO ARMADO

a) Pórticos

Es un sistema estructural en el que por lo menos el 80% del cortante en la base actúa sobre las columnas de los pórticos. En caso se tengan muros estructurales, estos deberán diseñarse para resistir una fracción de la acción sísmica total de acuerdo a su rigidez.

b) Dual

En un sistema estructural en el que las acciones sísmicas son resistidas por una combinación de pórticos y muros estructurales. Los pórticos deberán ser diseñados para tomar por lo menos el 25% del cortante en la base. Los muros estructurales serán diseñados para las fuerzas obtenidas del análisis respectivo.

c) De muros estructurales

Es un sistema estructural en el que la resistencia sísmica está dada predominantemente por muros estructurales sobre los que actúa por lo menos el 80% del cortante en la base.

d) Muros de ductilidad limitada

Es un sistema estructural en el que están comprendidas las edificaciones de baja altura con alta densidad de muros de ductilidad limitada.
ALBAÑILERÍA REFORZADA

a) Albañilería confinada

Es un sistema estructural en el que están comprendidas las edificaciones cuya estructura está constituida predominantemente por muros portantes de albañilería confinada.

b) Albañilería armada

Es un sistema estructural en el que están comprendidas las edificaciones cuya estructura está constituida predominantemente por muros portantes de albañilería armada.
03.- ESCALAS

El dibujo de un objeto cualquiera cuyas dimensiones excedan el tamaño común de una lámina se realiza representando el objeto con medidas reducidas proporcionalmente a escala.

El dibujo de un lote de terreno se tiene que hacer a una escala de reducción de 1 en 50 es decir 1 cm. en el plano representa 50 cm. o sea 0,50 m. de longitud real para que pueda entrar en una lámina.

En cambio detalles de algunos elementos generalmente se dibujan a una escala más grande como 1 en 10 o 1 en 20.

Generalmente las escalas se representan mediante cocientes o quebrados:

1:100, 1:50, 1:25, 1:20 y 1:10 o sus equivalentes 1/100, 1/50, 1/25, 1/20 y 1/10.

En los planos de estructuras las escalas usuales son las siguientes:

Planta de cimentación: 1/50

Encofrado de techos: 1/50

Detalles: 1/25, 1/20 y 1/10
04.- SIMBOLOGÍA

En la elaboración de los planos se suele emplear diversos símbolos convencionales que facilitan la lectura e interpretación de los planos.

El conocimiento de dichas representaciones gráficas es indispensable para quienes participan en la construcción de obras civiles.

Como por ejemplo.

a) \(f'c \) = Resistencia especificada del concreto a la compresión, en Kg/cm².
b) \(f_y \) = Esfuerzo especificado de fluencia del acero.
c) \(f'b \) = Resistencia característica a compresión axial de las unidades de albañilería.
d) \(f'm \) = Resistencia característica a compresión axial de la albañilería.
e) C1 = Columnas
f) V-101 = Vigas
g) P1 = Placas
h) V. C-104 = Viga de cimentación
i) V.CH-205 = Viga chata

Gracias a los símbolos que se incluyen en los planos es relativamente fácil deducir sus elementos.

De ahí la necesidad y obligatoriedad de incluir en los planos éstos símbolos.
05.- NIVELES

Al inicio de la construcción y durante la progresión de los trabajos es necesario establecer los niveles previstos en los planos.

Los niveles corresponden a las excavaciones, cimientos, pisos, entrepisos, techos y reciben diversos nombres con sus respectivas siglas como por ejemplo:

a) N. P. T. = Nivel de piso terminado

b) N. F. P. = Nivel de falso piso

c) N. T. N. = Nivel de terreno natural

d) N. F. C. = Nivel de fondo de cimiento

e) N. F. S. C. = Nivel de fondo de subcimiento

f) N. T. T. = Nivel de techo terminado
06.- CIMENTACIONES

Elementos estructurales que tiene como función transmitir las acciones de carga de la estructura al suelo de fundación.

a) Zapatas
Parte de la cimentación de una estructura que reparte y transmite la carga directamente al terreno de cimentación o a pilotes.

- Zapatas aisladas: Soportan la carga de una columna y puede ser central o perimetral.
- Zapatas combinadas: Soportan las cargas de dos o más columnas.
- Zapatas conectadas: Son zapatas aisladas conectadas por una viga de cimentación.

b) Cimientos corridos
Cimentación superficial en la que el largo (L) es igual o mayor que diez veces el ancho (B).

- Cimientos corridos para muros centrales.
- Cimientos corridos para muros perimetrales.

c) Plateas de cimentación
Cimentación constituida por una losa sobre la cual se apoyan varias columnas y cuya área se aproxima sensiblemente al área total de la estructura soportada.

- Parciales
- Total
CIMIENTO CORRIDO

ESCALA 1/25
NOTA:
LA CIMENTACIÓN CONTIGUA A LA CISTERNA DEBE TENER UN SUBCIMENTO DE CONCRETO CICLOPEO CON PROPORCIÓN DE 1/12 (CEMENTO/HORMIGÓN) +30% DE PIEDRA GRANDE MÁXIMO DE 8".

CIMENTO CORRIDO
ESCALA 1/25

CORTES 5-5, 6-6, 7-7
ESCALONAMIENTO DE CIMENTO CORRIDO

NOTA:
1. N. MAYOR QUE H
2. M. MENOR QUE H

DEBE TENERSE EN CUENTA:
DETALLE DE SUBZAPATA

ESCALA 1/25
VIGAS DE CIMENTACIÓN

VALORES DE M PARA EL 50% O MENOS, DE VARILLAS CORTADAS (*)

<table>
<thead>
<tr>
<th>VARILLAS</th>
<th>REFUERZO INFERIOR</th>
<th>REFUERZO SUPERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>H=CUAL.Q.</td>
<td>H=0.30m</td>
</tr>
<tr>
<td>1/2"</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>5/8"</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

(*) EN CASO DE CORTAR EL 100% DE VARILLAS INCREMENTAR LA LONGITUD DE EMPALME EN 60%

LOCALIZACION Y LONGITUD DE EMPALMES

ESCALA GRAFICA

NOTA:
LAS BARRAS DE ACERO LONGITUDINALES DE LAS VIGAS IRÁN A TODO LO LARGO DE LAS MISMAS, RESPECTANDO LAS ZONAS DE TRASLAPES

VIGAS DE CIMENTACIÓN

ESCALA 1/25
07.- COLUMNAS

Elemento estructural que se usa principalmente para resistir carga axial de compresión y que tiene una altura de por lo menos tres veces su dimensión lateral menor.

a) Columnas

- Columnas rectangulares: Su sección transversal tiene la forma de un rectángulo.
- Columnas cuadradas: Su sección transversal tiene la forma de un cuadrado
- Columnas circulares: Su sección transversal tiene la forma de un círculo.
- Columnas poligonales: Su sección transversal tiene la forma de un polígono convexo o no convexo.

b) Columnas de confinamiento

Elemento de concreto armado vertical cuya función es la de proveer ductilidad a un muro portante.

- Columnas rectangulares: Su sección transversal tiene la forma de un rectángulo.
- Columnas cuadradas: Su sección transversal tiene la forma de un cuadrado.
- Columnas poligonales: Su sección transversal tiene la forma de un polígono convexo o no convexo.
NOTA:
EL ANCLAJE MÍNIMO DE LAS BARRAS DE ACERO DE LAS PLACAS EN LAS COLUMNAS ES 0.175
NOTA:
EMPALMAR EN DIFERENTES PARTES
TRATANDO DE EMPALMAR FUERA DE
LA ZONA DE CONFINAMIENTO

<table>
<thead>
<tr>
<th>Ø</th>
<th>Le (cms.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>40</td>
</tr>
<tr>
<td>1/2"</td>
<td>45</td>
</tr>
<tr>
<td>5/8"</td>
<td>60</td>
</tr>
</tbody>
</table>
08.- MUROS DE CONCRETO ARMADO

Elemento estructural, generalmente vertical empleado para encerrar o separar ambientes, resistir cargas axiales de gravedad y resistir cargas perpendiculares a sus planos provenientes de empujes laterales de suelos o líquidos.

a) Muros de corte (placa)

Muros sometidos a cargas verticales y horizontales en su plano.

b) Muros de carga

Muros sometidos a carga axial con o sin flexión transversal a su plano.

c) Muros de contención

Muros sometidos a cargas normales a su plano.

- Cisterna: Tanque de almacenamiento de agua que soporta la presión del terreno y del agua que contiene.
- Tanque elevado: Tanque de almacenamiento de agua que soporta la presión del agua.
- Piscina: Tanque de almacenamiento de agua que soporta la presión del agua.
- Muros de contención: Muro de concreto armado que soporta la presión del terreno.
MURO DE CONTENCIÓN
ESCALA 1/25

<table>
<thead>
<tr>
<th>Ø</th>
<th>Ld (" TRACCIÓN cms.</th>
<th>Ld (*) TRACCIÓN BARRAS SUP. cms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>1/2"</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>5/8"</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>

(*) Barras Sup.: Barras horizontales que tengan por debajo más de 30 cms. de Concreto Fresco.

LONGITUDES DE ANCLAJE
ESC. GRAFICA
LOSA SUPERIOR
(CISTERNA)
S/C = 200 Kg/m2.
ESCALA 1/25

CORTE TÍPICO
ESCALA 1/25

ENCUENTRO
DE MUROS
(PLANTA)
ESCALA 1/25

CISTERNA
LOSA SUPERIOR
S/C = 50kg/m2
H=0.15 m.
ESCALA 1/25

LOSA MACIZA DEL TANQUE ELEVADO PREFABRICADO
S/C=1000 Kg./m2.
H=0.15 m.
ESCALA 1/50
LOSAS INFERIOR
S/C = 2000kg/m2
H=0.15 m
ESCALA 1/25

TANQUE ELEVADO
CORTE

TANQUE ELEVADO

ESCALA 1/25
09. - MUROS DE ALBAÑILERÍA

Material estructural compuesto por unidades de albañilería asentadas con mortero o por unidades de albañilería apiladas, en cuyo caso son integradas con concreto líquido.

Según su comportamiento estructural existen de dos tipos:

a) Muros portantes

Muro diseñado y construido en forma tal que pueda transmitir cargas verticales y horizontales de un nivel al nivel inferior o a la cimentación. Estos muros componen la estructura de un edificio de albañilería y deberán tener continuidad vertical.

b) Muros no portantes

Muro diseñado y construido en forma tal que solo lleva cargas provenientes de su peso propio y cargas transversales a su plano.
ANCLAJE EN ÚLTIMO TECHO
ESCALA 1/25

DETALLE DE NACIMIENTO DE COLUMNA
ESCALA 1/25
LOSAS A DIFERENTES ALTURAS

ESCALA 1/20
Todos los tabiques estarán separados de la estructura tanto en el extremo superior como en los laterales.

CONFINAMIENTOS DE MUROS
ESC. GRAFICA

CORTES X - X
ESC. 1/20

CORTES Y - Y
ESC. 1/20
Según los procedimientos constructivos se clasifican en:

- **Muros de albañilería simple**

Son muros de albañilería sin refuerzo o con refuerzo que no cumple los requisitos mínimos.

- **Muros de albañilería confinada**

Son muros de albañilería reforzada con elementos de concreto armado en todo su perímetro, vaciados posteriormente a la construcción de la albañilería.

La cimentación de concreto se considerará como confinamiento horizontal para los muros del primer nivel.

- **Muros de albañilería armada**

Son muros de albañilería reforzada interiormente con varillas de acero vertical y horizontalmente e integradas mediante concreto líquido, de tal manera que los diferentes componentes actúen conjuntamente para resistir los esfuerzos.

A los muros de albañilería armada también se les denomina muros armados.
10.- VIGAS

Elemento estructural que trabaja fundamentalmente a flexión

a) Vigas

- Vigas peraltadas
 Son las vigas que tienen una altura mayor al espesor de la losa y por tanto es visible.

- Vigas invertidas
 Son las vigas que sobresalen hacia la parte superior de la losa.

- Vigas chatas
 Son las vigas que tienen el espesor de la losa.

b) Vigas de confinamiento

Elemento de concreto armado horizontal cuya función es la de proveer ductilidad a un muro portante.

- Vigas peraltadas
 Son las vigas que tienen una altura mayor al espesor de la losa y tienen el espesor el muro.

- Vigas invertidas
 Son las vigas que sobresalen hacia la parte superior de la losa y tienen el espesor del muro.

- Vigas chatas
 Son las vigas que tienen el espesor de la losa y del muro.
VIGAS

ESCALA 1/20

Estribos: 1 @ 0.05; 9 @ 0.10; Rto. @ 0.20 en c/Ex1.

VIGAS DE MADERA

ESCALA 1/20
VIGAS DE CONFINAMIENTO
ZONAS EN LAS QUE NO DEBEN HACERSE TRASLAPES

ESC. GRAFICA

<table>
<thead>
<tr>
<th>Ø</th>
<th>Dcm</th>
<th>Lcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>1/2"</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>5/8"</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

GANCHOS ESTANDAR

<table>
<thead>
<tr>
<th>Ø</th>
<th>Dcm</th>
<th>Lcm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4"</td>
<td>2.5</td>
<td>6.5</td>
</tr>
<tr>
<td>3/8"</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>
11.- LOSAS

Elemento estructural de espesor reducido respecto a sus otras dimensiones usado como techo o piso, generalmente horizontal y armado en una o dos direcciones según el tipo de apoyo existente en su contorno.

Usado también como diafragma rígido para mantener la unidad de la estructura frente a cargas horizontales de sismo.

a) Losas aligeradas

- Con viguetas en una dirección

- Con viguetas en dos direcciones

b) Losas macizas

- Con una malla de barras de acero

- Con dos mallas de barras de acero

c) Losas nervadas

- Con nervaduras en una dirección

- Con nervaduras en dos direcciones
DETALLE TÍPICO DE
LOSA MACIZA

ESCALA 1/10

DETALLE TÍPICO DE
LOSA ALIGERADA

ESCALA 1/10

NOTA:

A— NO EMPALMAR MÁS DEL 50% DEL ÁREA TOTAL EN UNA MISMA SECCIÓN.

B— EN CASO DE NO EMPALMASE EN LAS ZONAS INDICADAS O LOS PORCENTAJES ESPECIFICADOS AUMENTAR LA LONGITUD DE EMPALME EN UN 70% O CONSULTAR AL PROYECTISTA.

C— PARA ALIGERADOS Y VIGAS CHATAS EL ACERO INFERIOR SE EMPALMARA SOBRE LOS APOYOS, SIENDO LA LONGITUD DE EMPALME IGUAL A 25cm. PARA ø3/8" Y 35cm. PARA ø1/2" Y 45 cm. PARA ø5/8".
VALORES DE M PARA EL 50% O MENOS DE VARILLAS CORTADAS (*)

<table>
<thead>
<tr>
<th>VARILLAS</th>
<th>REFUERZO INFERIOR</th>
<th>REFUERZO SUPERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>H=CUALO</td>
<td>H<=30m</td>
</tr>
<tr>
<td>3/8"</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1/2"</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>5/8"</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

(*) EN CASO DE CORTAR EL 100% DE VARILLAS
INCREMENTAR LA LONGITUD DE EMPALME EN 70%

LOCALIZACION Y LONGITUD
EMPALMES EN VIGAS Y LOSAS

ESCALA GRAFICA
12.- ESCALERAS

Elemento de la edificación con gradas, que permite la circulación de las personas entre los diferentes niveles. Sus dimensiones se establecen sobre la base del flujo de personas que transitarán por ella y el traslado del mobiliario.

- Escaleras rectas de un solo tramo
- Escaleras rectas de dos tramos
- Escaleras rectas de tres ó más tramos
- Escaleras helicoidales
- Escaleras caracol
- Escaleras en abanico
- Escaleras en alfombra
13.- PLANTA DE CIMENTACIÓN

Es la expresión gráfica donde se indican los ejes de los elementos estructurales verticales como las columnas, muros de concreto armado o muros de albañilería, en las direcciones principales.

La ubicación de la junta de separación sísmica con respecto a las otras edificaciones o entre partes de la misma edificación, las juntas de dilatación entre los elementos verticales, los nombres y niveles del falso piso de los ambientes.

También los tipos de cimentación indicando sus características respectivas como sus dimensiones, refuerzos de acero, profundidad de cimentación, la ubicación de la cisterna y los cimientos de las escaleras.
14.- ENCOFRADO DE TECHO

Es la expresión gráfica donde se indican las características de la losa aligerada como la dirección y ubicación de las viguetas con sus refuerzos de acero.

La ubicación y distribución de los refuerzos de acero de la losa maciza.

Las columnas, las vigas y muros portantes respectivos indicando si son de albañilería o de concreto armado.
15.- ESPECIFICACIONES TÉCNICAS

Es el cuadro donde se indican las propiedades y características de los diferentes materiales e indicaciones o requisitos para la construcción de la edificación respectiva de acuerdo al Reglamento Nacional de Edificaciones:

a) Suelos (Norma E-050)

b) Concreto (Norma E-060)
 - Concreto simple.
 - Concreto armado.
 - Concreto ciclópeo.

c) Acero (Norma E-060)

d) Albañilería (Norma E-070)
 - Unidades de albañilería
 - Mortero

e) Madera (Norma E-010)

f) Vidrios (Norma E-040)

g) Recubrimientos (Norma E-60)

h) Sobrecargas (Norma E-20)
ESPECIFICACIONES TÉCNICAS

SUÉLO
- t = 0.90 kg/cm² (ARENA FINA LIMOSA)
- Df = 1.50 m.

CONCRETO
- A. C/COLEO: CIMIENTO = t/110 + 30% P.G. Mín. 6 ''
 SOBRECIMIENTO = t/6 + 25% P.M. Mín. 3 ''
- B. ARMADO : f’c = 210 kg/cm² - (Mínimo según E-050)

ACERO
- f y = 4200 kg/cm² - GRADO 60 - (Máximo según E-060)

ALBAÑILERÍA
- f’m = 45 kg/cm²
- A. LADRILLO = TIPO IV
- B. MORTERO = P1

RECUBRIMIENTOS
- A. ZAPATAS = 5 cms.
- B. CIMIENTO CORRIDO = 5 cms.
- C. COLUMNAS Y VIGAS = 4 cms.
- D. ALIGERADO = 2 cms.
- E. CISTERNA = 4 cms.
- F. ELEMENTOS DE CONFINAMIENTO = 2 cms.

SOBRECARGAS
- A. LOSAS = 200 kg/m².

ESPECIFICACIONES TÉCNICAS

PROFESIONAL:

PROPIETARIO:

PROYECTO:

UBICACIÓN:

ESPECIALIDAD:

DIBUJO: Dibujo

MEMBRETE
16.- CUADROS TÉCNICOS

Donde se indican los datos necesarios para que se pueda evaluar el proyecto de estructuras, de acuerdo al Reglamento Nacional de Edificaciones:

a) Resumen de las condiciones de suelos
 (Norma E-050)

 - Tipo de cimentación
 - Estrato de apoyo de la cimentación
 - Parámetros de diseño para la cimentación
 - Profundidad de la cimentación
 - Presión admisible
 - Factor de seguridad por corte
 - Asentamiento diferencial o total
 - Agresividad del suelo a la cimentación
 - Recomendaciones adicionales

b) Parámetros para el análisis sísmico
 (Norma E-030)

 - Zonificación
 - Categoría de edificaciones
 - Parámetros del suelo
 - Factor de amplificación sísmica
 - Coeficiente de reducción

c) Análisis sísmico estático
 (Norma E-030)

 - Altura total de la edificación en metros
 - Período fundamental
 - Peso de la edificación
 - Fuerza cortante en la base
 - Desplazamiento lateral
 - Junta de separación sísmica
PARAMETROS PARA EL ANALISIS SISMICO

ZONA: 3
PERFIL DE SUELO: S3
CATEGORIA: C
SISTEMA ESTRUCTURAL: DUAL
ESTRUCTURA REGULAR
COEFICIENTE DE REDUCCION:
 Rx = 7
 Ry = 7

ANALISIS SISMICO ESTATICO

ALTURA DE EDIFICACION: h=82.25 m
PERIODO FUNDAMENTAL: T=0.1375
COEFICIENTE SISMICO: C=2.5
PESO TOTAL DE LA EDIFICACION: P=318.86 TON
FRACCION PARA CALCULO DE V: 0.20
FUERZA CORTANTE EN LA BASE: V=63.78 TON
DIRECCION X - X = 0.003
DIRECCION Y - Y = 0.0041
DESPLAZ. RELATIVO MAX. ADM. = 0.005
DESPLAZ. EN EL ULTIMO NIVEL = 2.31 cm.

RESUMEN DE LAS CONDICIONES DE CIMENTACION

TIPO DE CIMENTACION: Zapatas y vigas de cimentacion.
ESTRATO DE APOYO DE LA CIMENTACION:
 Arena mal gradada en estado semidensio.
PROFUNDIDAD DE LA CIMENTACION: 1.50 m.
PRESION ADMISIBLE: 0.90 Kg/cm2.
FACTOR DE SEGURIDAD POR CORTE: 3
ASENTAMIENTO DIFERENCIAL: 0.13 cm.
AGRESIVIDAD DEL SUELO: Ninguna.

REGLAMENTO Y NORMAS UTILIZADAS

- REGLAMENTO NACIONAL DE EDIFICACIONES.
- NORMAS: E-020, E030, E-050, E-060 y E-070.

RELACION DE PLANOS

- PLANTA DE CIMENTACION: E-01/03
- ENCOFRADO DE TECNO - VIGAS: E-02/03
- ENCOFRADO DE TECNO - CISTERNA: E-03/03

CUADROS TECNICOS
GLOSARIO

ASENTAMIENTO.- Diferencia de nivel entre dos cimentaciones adyacentes de una misma estructura.

COMPRESIÓN.- Acción de apretar, estrechar, reducir a menor volumen.

CONFINAMIENTO.- Conjunto de elementos de concreto armado, horizontales y verticales, cuya función es la de proveer ductilidad a un muro portante.

CORTANTE.- Fuerza que actúa cortando transversalmente al elemento estructural o a la estructura.

DIAFRAGMA.- Separación horizontal entre pisos o niveles de una edificación.

DUCTILIDAD.- Capacidad de deformación.

FLEXIÓN.- Acción o efecto de doblar.

PERÍODO.- Tiempo que una cosa trata de volver al estado que tenía.

TRACCION.- Acción y efecto de estirar.
PRIMER PISO
S/C (200 Kg/m²)
H=0.30
ESCALA 1:50

ENCOFRADO DE TECHO

SENCICO
G.F.P.
MANUAL DE LECTURA DE PLANOS
DE ESTRUCTURAS
LAMINA 04
SEGUNDO PISO
S/C=250 Kg/m²
H/H=20
ESCALA 1:50

ENCOFRADO DE TECHO

SENCICO
G.F.P.
MANUAL DE LECTURA DE PLANOS DE ESTRUCTURAS
LAMINA 05
TERCER PISO
S/C ≤ 150 Kg/m2
= 10:20
ESCALA 1:50

ENCOFRADO DE TECHO

SENCISCO
G.F.P.
MANUAL DE LECTURA DE PLANOS
DE ESTRUCTURAS

LAMINA 06
MANUAL DEL PARTICIPANTE

LECTURA DE PLANOS DE INSTALACIONES SANITARIAS

INFORMACION TECNOLOGICA DIRIGIDO A PARTICIPANTES DEL CURSO DE LECTURA DE PLANOS DE INSTALACIONES SANITARIAS

LIVA JUNIO DEL 2010
GERENTE DE FORMACIÓN PROFESIONAL

- Ing. María Mercedes Suárez Olivera

EQUIPO DE TRABAJO

- **ELABORACIÓN**: Ing. Max Torres Rojas
- **COORDINACIÓN**: Ing. Patricia Mestanza Acosta
- **APOYO**: Arq. Lizbeth Astrid Solís Solís

 Jhonn Ramírez Querevalú
INDICE

Presentación.

Generalidades.

1. Instalaciones Sanitarias.

2. Sistemas Directo de abastecimiento de agua.

4. Sistema Indirecto: Cisterna - Tanque Hidroneumático.

5. Simbología.

7. Cuadro Técnico.

8. Redes de agua fría.

9. Isométricas.

10. Redes de agua caliente.

11. Calentadores.

12. Redes de desagüe.

13. Cajas de registro.

14. Redes de ventilación.

15. Diagrama de montantes.

Glosario.
PRESENTACIÓN

El presente documento denominado "Manual de Lectura de Planos de Instalaciones Sanitarias" se ha elaborado de acuerdo al Programa Curricular del curso de igual denominación.

El propósito de este Manual es el de servir como guía en el proceso de aprendizaje del participante; así como de los docentes a cargo del desarrollo del curso, facilitando la planificación de los contenidos y de su ejecución ordenada y secuencial.

Es necesario tener presente que la información que contiene este Manual, es únicamente para el uso del SENCICO como material de estudio o de consulta, por lo que está prohibida su reproducción parcial o total por cualquier medio.

Cabe señalar que el Manual como todo documento, será motivo de reajustes permanentes con la inclusión de temas complementarios a los existentes o de nuevos.

En tal sentido los aportes y sugerencias de los usuarios serán recibidas con el reconocimiento de la Gerencia de Formación Profesional.

GERENCIA DE FORMACIÓN PROFESIONAL
GENERALIDADES

El presente Proyecto contempla el diseño de las Instalaciones Sanitarias para una edificación destinada a Vivienda Unifamiliar que consta de tres niveles conforme lo exige el Reglamento Nacional de Edificaciones en su Norma: IS - 010.

El área del terreno es de 288.00 m². y el área construida total es de 354.313 m²., y corresponde a cada piso las siguientes áreas construidas:

Primer piso: 108.958 m².

Segundo piso: 140.385 m².

Tercer piso: 104.970 m².

El diseño arquitectónico tiene la siguiente distribución de ambientes:

Primer piso:
Ingreso, car port, jardín, sala, comedor, terraza, estudio, hall, escalera que lleva al segundo piso, baño, jardín interior, cocina, baño, estar, dormitorio, jardín interior, escalera auxiliar que lleva al tercer piso.

Segundo piso:
Escalera que viene del primer piso y lleva al tercer piso, estar, baño, dormitorio 1, dormitorio 2, baño, dormitorio principal, walk in closet, baño, cuarto de juegos, balcón.

Tercer piso:
Escalera que viene del segundo piso, estar, cuarto de costura, baño, sala de usos múltiples, baño, balcón, lavandería, depósito, patio.
Los niveles de los pisos son los que se indican a continuación:

Primer nivel: +0.15 m.

Segundo nivel: +2.85 m

Tercer nivel: +5.55 m.

La edificación se abastecerá de una conexión domiciliaria de 1/2" de la red pública, la cual alimentará a una cisterna cuya capacidad es de 2.00 m³ y mediante una electrobomba de 1/2 H.P. (aprox.) se elevará a un tanque elevado prefabricado de 1.00 m³ de capacidad.

Los cálculos de volumen se detallan a continuación y fueron realizados de acuerdo a la Norma IS-010 del Reglamento Nacional de Edificaciones:

a. Dotación diaria: 1700.00 m³.

 Uso: Vivienda unifamiliar.

 Área del lote: 288.00 m².

b. Volumen de la cisterna:

 Volumen = $\frac{3}{4} \times 1700.00 = 1275.00$ litros, pero usamos 2000 litros = 2.00 m³.

c. Volumen del tanque elevado:

 Volumen = $\frac{1}{3} \times 1700.00 = 566.67$ litros, pero usamos 1000 litros = 1.00 m³.

d. Unidades de gasto: 55 U.G.

e. Gasto probable: 1.19 litros/segundo.

f. Caudal de bombeo: 1.19 litros/segundo.

Los desagües serán evacuados por gravedad a través de montantes, las cuales se empalmarán a los ramales horizontales de los pisos superiores.
En el primer piso los ramales serán conducidos a la conexión domiciliaria de desagüe de 4" de diámetro por ramales colectores que tendrán cajas de registro ubicadas convenientemente para la limpieza de inspección.

Todas las montantes terminan en sombreros de ventilación en la planta de techo.

Según la Ley N°27157 los planos de Instalaciones Sanitarias deben contener lo siguiente:

- Plantas con indicación de redes de distribución y aparatos sanitarios.
- Cortes con indicación de montantes cuando se trate de edificaciones de varios niveles.
- Planos de conjunto cuando sea necesario.
- Detalles de servicios higiénicos, silos, cisternas, tanques elevados, etc.
- Nomenclatura de los elementos señalados en los planos.
- Especificaciones técnicas.
- Las plantas y planos de conjunto serán presentados a las mismas escalas de los planos de arquitectura y los detalles a escalas que permitan su perfecta comprensión.

Según el Reglamento Nacional de Edificaciones el proyecto de Instalaciones Sanitarias para Edificaciones debe contener la siguiente información:

a) Planos de distribución de redes de agua y desagüe por niveles.

b) Planos de isometría y montantes.

c) Plano de detalles constructivos.

d) Especificaciones técnicas de los materiales.

e) Procedimiento de ejecución, de ser necesario.
1. INSTALACIONES SANITARIAS.

Las instalaciones sanitarias de una edificación incluye las redes de agua fría, las redes de agua caliente, las redes de desagüe, las redes de ventilación así como las válvulas, accesorios y equipos complementarios.

Debe cumplir los siguientes objetivos:

- Dar un adecuado sistema de agua en calidad y cantidad.
- Proteger la salud de las personas y su propiedad.
- Eliminar las aguas servidas mediante su conexión a la red pública o a un método sanitario de eliminación.
2. SISTEMA DIRECTO DE ABASTECIMIENTO DE AGUA.

Es cuando la red pública es suficiente para abastecer a todos los puntos de consumo a cualquier hora del día.

El suministro de la red pública debe ser permanente y abastecer directamente todas las instalaciones.
3. SISTEMA INDIRECTO: CISTERNA - TANQUE ELEVADO.

Cuando la presión en la red pública no es suficiente para dar servicio a los artefactos sanitarios de lo niveles más altos es necesario que la red suministre agua a reservorios como la cisterna y el tanque elevado y de este abastecer por gravedad a todo el sistema de agua.

CISTERNA:

Depósito de almacenamiento ubicado en la parte baja de una edificación.

TANQUE ELEVADO:

Depósito de almacenamiento de agua que da servicio por gravedad.
4. **SISTEMA INDIRECTO: CISTERNA - TANQUE HIDRONEUMÁTICO.**

Cuando la presión en la red pública no es suficiente para dar servicio a los artefactos sanitarios de los niveles más altos es necesario que la red suministre agua a reservorios como la cisterna y el tanque hidroneumático y de este abastecer por bombeo a todo el sistema de agua.
5. SÍMBOLOGÍA.

En la elaboración de los planos se suele emplear diversos símbolos convencionales que facilitan la lectura e interpretación de los planos.

El conocimiento de dichas representaciones gráficas es indispensable para quienes participan en la construcción de obras civiles.

Gracias a los símbolos que se incluyen en los planos es relativamente fácil deducir sus elementos.

De ahí la necesidad y obligatoriedad de incluir en los planos éstos símbolos.
SIMBOLOGÍA - AGUA

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEDIDOR</td>
<td></td>
<td>UNIÓN UNIVERSAL</td>
</tr>
<tr>
<td></td>
<td>TUBERÍA DE AGUA FRIA PVC–C10</td>
<td></td>
<td>VÁLVULA DE COMPUERTA VERTICAL</td>
</tr>
<tr>
<td></td>
<td>TUBERÍA DE AGUA CALIENTE CPVC</td>
<td></td>
<td>CODO DE 90° (SUBE)</td>
</tr>
<tr>
<td></td>
<td>VÁLVULA DE COMPUERTA</td>
<td></td>
<td>CODO DE 90° (BAJA)</td>
</tr>
<tr>
<td></td>
<td>VÁLVULA DE RETENCION</td>
<td></td>
<td>CODO DE 90°</td>
</tr>
<tr>
<td></td>
<td>VÁLVULA DE PASO</td>
<td></td>
<td>TEE (BAJA)</td>
</tr>
<tr>
<td></td>
<td>VÁLVULA FLOTADOR</td>
<td></td>
<td>TEE (SUBE)</td>
</tr>
</tbody>
</table>

SIMBOLOGÍA - DESAGÜE

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TUBERÍA DE DESAGÜE (PVC)</td>
<td></td>
<td>SUMIDERO</td>
</tr>
<tr>
<td></td>
<td>TUBERÍA DE VENTILACIÓN (PVC)</td>
<td></td>
<td>TRAMPA "P"</td>
</tr>
<tr>
<td></td>
<td>YEE</td>
<td></td>
<td>TEE</td>
</tr>
<tr>
<td></td>
<td>CODO DE 45°</td>
<td></td>
<td>CODO DE 90°</td>
</tr>
<tr>
<td></td>
<td>CODO 90° CON VENTILACIÓN</td>
<td></td>
<td>SOMBRERO DE VENTILACIÓN</td>
</tr>
<tr>
<td></td>
<td>REGISTRO ROSCADO</td>
<td></td>
<td>CAJA DE REGISTRO</td>
</tr>
</tbody>
</table>
6. ESPECIFICACIONES TÉCNICAS.

Es el cuadro donde se indican las propiedades y características de los diferentes materiales e indicaciones o requisitos para la construcción de la edificación respectiva de acuerdo al Reglamento Nacional de Edificaciones:

- Norma IS - 010: Instalaciones Sanitarias para Edificaciones.

ESPECIFICACIONES TÉCNICAS

1.- LAS TUBERÍAS DE AGUA FRÍA SERÁN DE PVC CLASE 10.
2.- LAS TUBERÍAS DE AGUA CALIENTE SERÁN DE CPVC.
3.- LAS TUBERÍAS DE DESAGÜE Y VENTILACIÓN SERÁN DE PVC MEDIA PRESIÓN RÍGIDO Y TENDRÁN UNA PENDIENTE MÍNIMA DE 1% PARA LAS TUBERÍAS DE ø4’’ Y 1.5% PARA LAS TUBERÍAS DE ø2’’.
4.- LAS VÁLVULAS IRÁN INSTALADAS A LAS TUBERÍAS ENTRE DOS UNIONES UNIVERSALES.
5.- LAS VÁLVULAS SERÁN DE BRONCE CON RESISTENCIAS DE 125 P.S.I.
6.- LAS TUBERÍAS DE VENTILACIÓN SE PROLONGARÁN HASTA 1.80m SOBRE EL NIVEL TECNO TERMINADO, EN ZONAS ACCESIBLES Y 15cm EN ZONAS INACCEÍBLES.
7.- SE DEBEN REALIZAR PRUEBAS HIDRAULICAS PARciales y TOTALES:
 a). PARA EL AGUA POTABLE DURANTE MEDIA HORA LAS TUBERÍAS Y ACCESORIOS DEBEN SOPORTAR UNA PRESIÓN DE 100 P.S.I. GENERADA POR UNA BOMBA DE MANO, SIN PRESENTAR FILTRACIONES.
 b). PARA LAS AGUAS SERVIDAS TAPAR LOS PUNTOS BAJOS Y LLENAR CON AGUA LAS TUBERÍAS DE DESAGÜE DURANTE 24 HORAS SIN PRESENTAR DESCENSO DEL NIVEL DE AGUA EN EL PUNTO MÁS ALTO.
7. CUADRO TÉCNICO.

En cuadro se debe indicar los siguientes datos técnicos:

- Dotación diaria.
- Volumen del tanque elevado.
- Capacidad del tanque hidroneumático.
- Unidades de gasto.
- Caudal probable de consumo.
- Caudal de bombeo.
- Altura dinámica total.
- Potencia de las electrobombas.

CÁLCULO DE VOLÚMENES Y EQUIPO DE BOMBEO

<table>
<thead>
<tr>
<th>VIVIENDA UNIFAMILIAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÁREA DEL TERRENO = 288.00 m².</td>
</tr>
<tr>
<td>DOTACIÓN DIARIA = 1700 lts.</td>
</tr>
</tbody>
</table>

| VOLUMEN DE CISTERNA = 1275 LITROS = 1.50 m³. |
| VOLUMEN DE TANQUE ELEVADO = 566.67 LITROS = 1.00 m³. |

| UNIDADES DE GASTO = 55 U.G. |
| GASTO PROBABLE = 1.19 LPS. |
| CAUDAL DE BOMBEO = 1.19 LPS. |
| ALTURA DINAMICA TOTAL = 18.60 m. |
| POTENCIA DE LA ELECTROBOMBA = 1/2 H.P. |
8. REDES DE AGUA FRÍA.

Son las tuberías que llevan el agua fría a cada uno del aparatos sanitarios con la presión e higiene adecuada para dar un buen servicio, desde la red pública o desde el tanque elevado.
9. ISOMETRÍA.

Los dibujos realizados en planta a veces no son muy legibles por lo tanto se debe recurrir a los dibujos isométricos para poder indicar con precisión el recorrido de las tuberías.
10. REDES DE AGUA CALIENTE.

Son las tuberías que llevan el agua caliente con la presión e higiene adecuada para dar un buen servicio desde los calentadores hasta los aparatos sanitarios.

Las instalaciones de agua caliente de una edificación deberán satisfacer las necesidades de consumo y seguridad contra accidentes.
11. CALENTADORES.

Se debe considerar un espacio independiente y seguro para el equipo de producción de agua caliente.

Instalar dispositivos destinados a controlar el exceso de presión de los sistemas de producción de agua caliente.

Debe instalarse una válvula de retención en la tubería de abastecimiento de agua fría, dicha válvula no podrá ser colocada entre el equipo de producción de agua caliente y el dispositivo para controlar el exceso de presión.

Instalar dispositivos destinados a controlar el exceso de temperatura en los equipos de producción de agua caliente.

Los escapes de vapor o agua caliente provenientes de los dispositivos de seguridad y control deberán disponerse en forma indirecta al sistema de drenaje, ubicando los sitios de descarga en lugares que no causen accidentes.

El sistema de alimentación y distribución de agua caliente estará dotado de válvulas de interrupción en el ingreso de agua fría y salida de agua caliente y en cada servicio sanitario.
12. **REDES DE DESAGÜE.**

Son las tuberías que llevan las aguas servidas por gravedad a la conexión domiciliaria.

Los colectores se colocarán en tramos rectos.

La pendiente de los colectores y de los ramales de desagüe interiores será uniforme y no menor de 1% para diámetros de 4" y mayores y no menor de 1.5% para diámetros de 3" o menores.
13. CAJAS DE REGISTRO.

Son cajas que sirve para inspeccionar y registrar el paso de las aguas servidas.

Las dimensiones de las cajas de registro se determinarán de acuerdo a los diámetros de las tuberías y a su profundidad de acuerdo a la tabla siguiente:

<table>
<thead>
<tr>
<th>DIMENSIONES INTERIORES</th>
<th>DIÁMETRO MÁXIMO</th>
<th>PROFUNDIDAD MÁXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10"x20"</td>
<td>4"</td>
<td>0.60 m.</td>
</tr>
<tr>
<td>12"x24"</td>
<td>6"</td>
<td>0.80 m.</td>
</tr>
<tr>
<td>18"x24"</td>
<td>6"</td>
<td>1.00 m.</td>
</tr>
<tr>
<td>24"x24"</td>
<td>8"</td>
<td>1.20 m.</td>
</tr>
</tbody>
</table>

Para profundidades mayores se deberá utilizar cámaras de inspección.

Se instalarán cajas de registro en las redes exteriores en todo cambio de dirección, pendiente, material o diámetro y cada 15 m. de largo como máximo, en tramos rectos.
14. REDES DE VENTILACIÓN.

Son tuberías que sirve para evitar el sifonamiento en las redes de desagüe y evitar que los malos olores se escapan.

El sistema de desagüe debe ser adecuadamente ventilado a fin de mantener la presión atmosférica en todo momento y proteger el sello de agua de cada una de las unidades del sistema.

El sello de agua deberá ser protegido contra sifonaje mediante el uso adecuado de ramales de ventilación, tubos auxiliares de ventilación, ventilación en conjunto.

Toda montante de desagüe deberá prolongarse al exterior sin disminuir su diámetro.

En el caso de que termine en una terraza accesible o utilizada para cualquier fin, se prolongará por encima del piso hasta una altura no menor de 1.80 m.

Cuando la cubierta del edificio sea un techo o terraza inaccesible, la montante será prolongada por encima de este 0.15 m. como mínimo.

![Diagrama de detalle del sombrero de ventilación](image-url)
15. DIAGRAMA DE MONTANTES.

Este diagrama indica el recorrido vertical de las tuberías de agua, desagüe y ventilación.

El diámetro de una montante no podrá ser menor que el de cualquiera de los ramales horizontales que en el descarguen.

Las montantes deben ser colocadas en ductos o espacios especialmente previstos para tal fin y cuyas dimensiones y accesos permitan su instalación, reparación, revisión o remoción.

Se permitirá utilizar un mismo ducto o espacio para la colocación de las tubería de agua y desagüe, siempre que exista un separación mínima de 0.20 m. entre sus generatrices más próximas.

Toda montante de desagüe deberá prolongarse al exterior sin disminuir su diámetro.
16. DETALLES.

Es importante indicar los diferentes detalles que ayudan en los procedimientos constructivos.

Como por ejemplo:

- Detalle del pase de tubería en muros de concreto armado.
- Detalle de nicho en muro para alojar las válvulas.
- Detalle de las tapas metálicas de la cisterna y del tanque elevado.
- Detalle de cisterna y tanque hidroneumático.
- Detalle de la cisterna.
- Detalle del tanque elevado.
- Detalle de tanque séptico.
- Detalle de pozo de percolación.
ARANDELA CUADRADA DE PLANCHAS DE FIERRO
SOLDADA AL TUBO PARA ANCLAJE CON EL CONCRETO

DETALLE DEL PASE DE TUBERÍA EN MUROS DE CONCRETO ARMADO

SINESCALA
DETALLE DE NICHOS EN MURO
PARA ALOJAR LAS VÁLVULAS DE COMPUERTA

SIN ESCALA
PLANTA

CORTE

DETALLE DE LA TAPA METÁLICA

Escala 1/10
DETALLE DE CISTERNA Y TANQUE HIDRONEUMÁTICO

ESCALA 1:10
DETALLE DE CISTERNA

ESCALA 1/25
DETALLE DE TANQUE ELEVADO

ESCALA 1:25
POZO DE ABSORCION
A.L. = 23.55 m².
C.T = 0.00
C.F = 1.20 m.
C.F = 3.36 m.

TANQUE SÉPTICO
VOL. = 3 m³.
C.T = 0.00
C.F = 0.70
C.F = 3.10

DETALLE DE TANQUE SÉPTICO
Y POZO DE PERCOLACIÓN
ESCALA 1 / 25

PLANTA DEL TANQUE SÉPTICO
ESCALA 1 / 25
DETALE TIPICO DEL TANQUE SÉPTICO
CORTE A-A

ESCALA 1 / 25
PLANTA TIPICA DE POZO DE ABSORCIÓN

ESCALA 1/25
DETALLE TIPÍCO DE POZO DE ABSORCIÓN

Corte A-A

Escala 1/25
GLOSSARIO

- ALIMENTADOR.- Tubería que abastece a los ramales.

- AGUA SERVIDA.- Agua que carece de potabilidad, proveniente del uso doméstico, industrial o similar.

- COLECTOR.- Tubería horizontal de un sistema de desagüe que recibe la descarga de los ramales o montantes.

- MONTANTE.- Tubería vertical de un sistema de desagüe que recibe la descarga de los ramales.

- RAMAL DE AGUA.- Tubería comprendida entre el alimentador y la salida a los servicios.

- RAMAL DE DESAGÜE.- Tubería comprendida entre la salida de servicio y la montante o colector.

- RED DE DISTRIBUCIÓN.- Sistema de tuberías compuesta por alimentadores y ramales.

- SIFONAJE.- Es la rotura o pérdida del sello hidráulico de la trampa (sifón), de un aparato sanitario, como resultado de la pérdida de agua contenida en ella.

- SERVICIO SANITARIO.- Ambiente que alberga uno o más aparatos sanitarios.

- TUBERÍA DE ALIMENTACIÓN.- Tubería comprendida entre el medidor y la válvula de flotador en el depósito de almacenamiento o el inicio de la red de distribución en el caso de no existir depósito.

- TUBERÍA DE IMPULSIÓN.- Tubería de descarga del equipo de bombeo.

- TUBERÍA DE SUCCIÓN.- Tubería de ingreso al equipo de bombeo.
1º PISO

REDES DE AGUA FRÍA Y AGUA CALIENTE
UBICACIÓN DEL TANQUE ELEVADO
1º PISO

REDES DE DESAGÜE Y VENTILACIÓN
UBICACIÓN DEL TANQUE ELEVADO

TANQUE ELEVADO
VOL = 10,00 m³

SENCICO
G.F.P.
MANUAL DE LECTURA DE PLANOS
DE INSTALACIONES SANITARIAS
LAMINA 10
DIAGRAMA DE MONTANTES DE AGUA
DIAGRAMA DE MONTANTES
DE DESAGÜE Y VENTILACION
LECTURA DE PLANOS DE INSTALACIONES ELÉCTRICAS

INFORMACION TECNOLOGICA DIRIGIDO A PARTICIPANTES DEL CURSO DE
LECTURA DE PLANOS DE INSTALACIONES ELÉCTRICAS

LIMA JUNIO DEL 2010
GERENTE DE FORMACIÓN PROFESIONAL

• Ing. María Mercedes Suárez Olivera

EQUIPO DE TRABAJO

• ELABORACIÓN : Ing. Max Torres Rojas

• COORDINACIÓN : Ing. Patricia Mestanza Acosta

• APOYO : Arq. Lizbeth Astrid Solís Solís

 Jhonn Ramírez Querevalú
ÍNDICE

Presentación

Generalidades

1. Instalaciones Eléctricas.
2. Acometida Eléctrica.
3. Simbología.
4. Especificaciones Técnicas.
5. Cuadros de cargas.
6. Diagramas unifilares.
7. Redes de alumbrado.
8. Redes de salidas de fuerza.
9. Redes de tomacorrientes.
10. Sistema de puesta a tierra.
11. Instalaciones de Comunicaciones.
12. Redes de teléfono externo.
13. Redes de teléfono interno.
15. Diagramas de montantes.

Glosario.
PRESENTACIÓN

El presente documento denominado "Manual de Lectura de Planos de Instalaciones Eléctricas" se ha elaborado de acuerdo al Programa Curricular del curso de igual denominación.

El propósito de este Manual es el de servir como guía en el proceso de aprendizaje del participante; así como de los docentes a cargo del desarrollo del curso, facilitando la planificación de los contenidos y de su ejecución ordenada y secuencial.

Es necesario tener presente que la información que contiene este Manual, es únicamente para el uso del SENCICO como material de estudio o de consulta, por lo que está prohibida su reproducción parcial o total por cualquier medio.

Cabe señalar que el Manual como todo documento, será motivo de reajustes permanentes con la inclusión de temas complementarios a los existentes o de nuevos.

En tal sentido los aportes y sugerencias de los usuarios serán recibidas con el reconocimiento de la Gerencia de Formación Profesional.

GERENCIA DE FORMACIÓN PROFESIONAL
GENERALIDADES

El presente Proyecto contempla el diseño de las Instalaciones Eléctricas para una edificación destinada a Vivienda Unifamiliar que consta de tres niveles conforme lo exige el Còdigo Nacional de Electricidad.

El área del terreno es de 288.00 m². y el área construida total es de 354.313 m²., y corresponde a cada piso las siguientes áreas construidas:

Primer piso: 108.958 m².
Segundo piso: 140.385 m².
Tercer piso: 104.970 m².

El diseño arquitectónico tiene la siguiente distribución de ambientes:

Primer piso: Ingreso, car port, jardín, sala, comedor, terraza, estudio, hall, escalera que lleva al segundo piso, baño, jardín interior, cocina, baño, estar, dormitorio, jardín interior, escalera auxiliar que lleva al tercer piso.

Segundo piso: Escalera que viene del primer piso y lleva al tercer piso, estar, baño, dormitorio 1, dormitorio 2, baño, dormitorio principal, walk in closet, baño, cuarto de juegos, balcón.

Tercer piso: Escalera que viene del segundo piso, estar, cuarto de costura, baño, sala de usos múltiples, baño, balcón, lavandería, depósito, patio.
Los niveles de los pisos son los que se indican a continuación:

Primer nivel: +0.15 m.

Segundo nivel: +2.85 m.

Tercer nivel: +5.55 m.

El diseño de las instalaciones eléctricas comprende:

a. Sistema de distribución de la energía eléctrica normal en baja tensión a 220 voltios - 3Ø - 60 hertz, con una máxima demanda de 6.163 Kw. y una capacidad de cortocircuito de 10 KA, para el tablero de distribución.

b. Sistema de distribución de comunicaciones:
 - Sistema de comunicación telefónica externa.
 - Sistema de intercomunicadores para controlar el ingreso de las personas.
 - Red de TV - cable.

c. Sistema de puesta a tierra que no debe superar los 15 Ohmios para los equipos de baja tensión y el tablero de distribución.

Para todo lo indicado en los planos y/o especificaciones técnicas, son válidas las prescripciones del Código Nacional de Electricidad en los tomos I y V y el Reglamento Nacional de Edificaciones.

Según la Ley Nº 27157 los planos de estructuras deben contener:

- Plantas con las salidas de alumbrado, interruptores, tomacorrientes, fuerza, comunicaciones, circuitos y demás elementos de los sistemas previstos.
- Planos de conjunto cuando sea necesario
- Detalles de pozo a tierra, montañes, etc
- Diagrama unifilar de tableros
- Nomenclatura de los elementos señalados en los planos
- Especificaciones técnicas
Las plantas y planos de conjunto serán presentados a las misma escalas de los planos de arquitectura y los detalles a escalas que permitan su perfecta comprensión.

Según el Reglamento Nacional de Edificaciones el proyecto de instalaciones eléctricas para edificaciones debe contener la siguiente información:

a) Plano de iluminación y tomas de corrientes por niveles.

b) Plano de diagrama de tableros eléctricos.

c) Plano de detalles de banco de medidores.

d) Plano de detalles constructivos.

e) Especificaciones técnicas de los materiales.

f) Procedimiento de ejecución, de ser necesario.
01. INSTALACIONES ELÉCTRICAS.

Las instalaciones eléctricas sirve para dotar de energía eléctrica a la edificación para su respectiva utilización en:

- Alumbrado.
- Tomacorrientes.
- Salidas de fuerza:
 - Cocina.
 - Calentador.
 - Electro bomba.
 - Lavadora.
 - Secadora.
 - Intercomunicador.
 - Puerta levadiza.
2. **ACOMETIDA ELÉCTRICA.**

ACOMETIDA:

Parte de una instalación eléctrica comprendida entre la red de distribución - incluye el empalme - y la caja de conexión y medición o estructura a la cual sirve.

La energía eléctrica se dota a través de un medidor de energía eléctrica en Kw-h (Kilowatts hora), que sirve como contador de la energía que va a consumir el usuario.

Esta acometida alimenta al tablero o tableros de distribución y de este tablero a cada uno de los circuitos redes como la de alumbrado, tomacorrientes, salidas de fuerza y comunicaciones.

La acometida puede ser subterránea o aérea.
CUADROS DE CARGAS: TD-01

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>P.I. (W)</th>
<th>F.D.</th>
<th>M.D. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMBRADO 90 m2.</td>
<td>2500</td>
<td>5500</td>
<td>1,00</td>
</tr>
<tr>
<td>ALUMBRADO 90 m2.</td>
<td>1000</td>
<td>1,00</td>
<td>1000</td>
</tr>
<tr>
<td>ALUMBRADO 90 m2.</td>
<td>1000</td>
<td>1,00</td>
<td>1000</td>
</tr>
<tr>
<td>ALUMBRADO 89.313 m2.</td>
<td>1000</td>
<td>1,00</td>
<td>1000</td>
</tr>
<tr>
<td>TOMACORRIENTES 1000 W.</td>
<td>1000</td>
<td>1,00</td>
<td>1000</td>
</tr>
<tr>
<td>COCINA</td>
<td>6000</td>
<td>1,00</td>
<td>6000</td>
</tr>
<tr>
<td>CALENTADOR</td>
<td>1500</td>
<td>1,00</td>
<td>1500</td>
</tr>
<tr>
<td>ELECTROBOMBA</td>
<td>373</td>
<td>1,00</td>
<td>373</td>
</tr>
<tr>
<td>INTERCOMUNICADOR</td>
<td>300</td>
<td>1,00</td>
<td>300</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14673 W.</td>
<td>–</td>
<td>14673 W.</td>
</tr>
</tbody>
</table>

CARGA ELÉCTRICA A CONTRATAR = P.I. x fu x fc

\[= 14673 \text{W.} \times 0.7 \times 0.6 \]

\[= 6.163 \text{ Kw., TRIFÁSICA, 220 V., 60 Hz.} \]

SOLICITAR A LUZ DEL SUR S.A. LO SIGUIENTE:

UN (01) SUMINISTRO TRIFÁSICO DE 6.163 Kw.
3. **SIMBOLOGÍA.**

En la elaboración de los planos se suele emplear diversos símbolos convencionales que facilitan la lectura e interpretación de los planos.

El conocimiento de dichas representaciones gráficas es indispensable para quienes participan en la construcción de obras civiles.

Gracias a los símbolos que se incluyen en los planos es relativamente fácil deducir sus elementos.

De ahí la necesidad y obligatoriedad de incluir en los planos éstos símbolos.

SIMBOLOGÍA DE ILUMINACIÓN

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋄</td>
<td>LUMINARIA COLGANTE (PAR)</td>
</tr>
<tr>
<td>⌂</td>
<td>DICROICO DE TECHO (empotrado)</td>
</tr>
<tr>
<td>✗</td>
<td>ILUMINACIÓN GENERAL (fluorescente compacto – adosado)</td>
</tr>
<tr>
<td></td>
<td>LUZ FLUORESCENTE (doble tubo – adosado)</td>
</tr>
<tr>
<td>★</td>
<td>LUMINARIA (incandescente – adosada)</td>
</tr>
<tr>
<td>✑</td>
<td>LUMINARIA DE GUÍA (bipín – h=.40cm)</td>
</tr>
</tbody>
</table>
SIMBOLOGÍA

<table>
<thead>
<tr>
<th>SÍMBOLO</th>
<th>DESCRIPCIÓN</th>
<th>CAJAS (mm)</th>
<th>ALTURA AL E.E (mts. S/N.P.T.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SALIDA PARA ALUMBRADO EN EL TECHO</td>
<td>OCT. 100X40</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>SALIDA PARA ALUMBRADO EN LA PARED – BRAQUETE</td>
<td>OCT. 100X40</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>INTERRUPTORES UNIPOLARES DE 1, 2 y 3 TIEMPOS</td>
<td>100X55X50</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>INTERRUPTOR DE CONMUTACIÓN</td>
<td>100X55X50</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>TOMACORRIENTE DOBLE CON TOMA DE TIERRA</td>
<td>100X55X50</td>
<td>0.30/1.10</td>
</tr>
<tr>
<td></td>
<td>SALIDA DE FUERZA CON TOMA DE TIERRA</td>
<td>INDICADA</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>CAJA DE PASO CUADRADA CON TAPA CIEGA: ALUMBRADO–TOMACORRIENTES–SALIDAS DE FUERZA/TELÉF., EXT./TELÉF. INT.</td>
<td>INDICADA</td>
<td>0.30 0 2.20</td>
</tr>
<tr>
<td></td>
<td>INTERRUPTOR BIPOLAR DE PALANCA CON FUS. DE PROTECCIÓN</td>
<td>ESPECIAL</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>COCINA ELÉCTRICA</td>
<td>10x100x50 TAPA UN GANG</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>CAJA DE PASO CON TAPA CIEGA</td>
<td>OCT. 100X40</td>
<td>0.30 0 2.20</td>
</tr>
<tr>
<td></td>
<td>TABLERO DE DISTRIBUCIÓN ELÉCTRICA</td>
<td>ESPECIAL</td>
<td>1.80 B.S.</td>
</tr>
<tr>
<td></td>
<td>TABLERO DE CONTROL DE BOMBAS DE AGUA SUMINISTRADO POR EL FABRICANTE DEL EQUIPO</td>
<td>ESPECIAL</td>
<td>1.80 B.S.</td>
</tr>
<tr>
<td></td>
<td>MEDIDOR DE ENERGÍA EN KW-H</td>
<td>ESPECIAL</td>
<td>1.50 B.S.</td>
</tr>
<tr>
<td></td>
<td>DIRECTORIO TELEFONO PORTERO</td>
<td>ESPECIAL</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>SALIDA EN LA PARED PARA: TELEFONO EXTERNO/TELÉFONO INTERNO</td>
<td>100X55X50</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>SALIDA PARA CALENTADOR ELÉCTRICO</td>
<td>100X55X50</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>SALIDA PARA TELEVISIÓN POR CABLE</td>
<td>INDICADA</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>CAJA DE PASO CUADRADA CON TAPA CIEGA PARA TV-CABLE</td>
<td>100x100x50 TAPA UN GANG</td>
<td>0.30 0 2.20</td>
</tr>
</tbody>
</table>

SÍMBOLO

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>POZO DE TIERRA</td>
<td></td>
</tr>
<tr>
<td>INTERRUPTOR TÉRMOMAGNÉTICO</td>
<td></td>
</tr>
<tr>
<td>INTERRUPTOR DIFERENCIAL</td>
<td></td>
</tr>
<tr>
<td>TUBERÍA EMPOTRADA EN EL PISO PARA TV-CABLE SALVO INDICACIÓN</td>
<td></td>
</tr>
<tr>
<td>TUBERÍA EMPOTRADA EN TECHO O PARED SALVO INDICACIÓN</td>
<td></td>
</tr>
<tr>
<td>TUBERÍA EMPOTRADA EN PISO SALVO INDICACIÓN</td>
<td></td>
</tr>
<tr>
<td>TUBERÍA EMPOTRADA EN EL PISO PARA TELEFONO EXTERNO SALVO INDICACIÓN</td>
<td></td>
</tr>
<tr>
<td>TUBERÍA EMPOTRADA EN EL PISO PARA TELEFONO INTERNO SALVO INDICACIÓN</td>
<td></td>
</tr>
</tbody>
</table>
4. ESPECIFICACIONES TÉCNICAS.

Es el cuadro donde se indican las propiedades y características de los diferentes materiales e indicaciones o requisitos para la construcción de la edificación respectiva de acuerdo al Código Nacional de Electricidad y el Reglamento Nacional de Edificaciones.

a) Código Nacional de Electricidad:

- Tomo I: Suministro.
- Tomo V: Utilización.

b) Reglamento Nacional de Edificaciones:

- Norma EM-010: Instalaciones eléctricas interiores.
- Norma EM-020: Instalaciones de comunicaciones.

SOLICITAR A LUZ DEL SUR S.A. LO SIGUIENTE:

- a) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA EL DEPARTAMENTO DEL PRIMER PISO.
- b) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DEL SEGUNDO PISO.
- c) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DUPLEX DEL SEGUNDO PISO.
- b) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DEL TERCER PISO.
- c) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DEL CUARTO PISO.
- c) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DUPLEX DEL CUARTO PISO.
- c) UN (01) SUMINISTRO TRIFÁSICO DE 13.5kW PARA UN DEPARTAMENTO DEL QUINTO PISO.
- e) UN (01) SUMINISTRO MONOFÁSICO DE 4.3kW PARA LOS SERVICIOS GENERALES.
ESPECIFICACIONES TÉCNICAS

1.- TODOS LOS CONDUCTORES A SER UTILIZADOS SERÁN DE COBRE ELECTROLÍTICO DE 99.9% DE CONDUCTIBILIDAD CON AISLAMIENTO TERMOPLÁSTICO TIPO THW Y TW PARA 600 V. CON SECCIONES EN mm².
 LOS CONDUCTORES DE CALIBRE MÍNIMO A EMPLEARSE SERÁN DE 2.5 mm².
 LOS CONDUCTORES DE CALIBRES SUPERIORES A 6 mm². SERÁN CABLEADOS.
 PARA LOS ALIMENTADORES DE FUERZA SE UTILIZARÁ EL TIPO THW y TW RESPECTIVAMENTE.

2.- TODAS LAS INSTALACIONES SERÁN EMPOTRADAS. LOS ELECTRODUTOS A SER UTILIZADOS SERÁN DEL TIPO PESADO DE POLICLORURO DE VINILO (PVC−P) DE ACUERDO A LO INDICADO EN LOS PLANOS.
 EL DIÁMETRO MÍNIMO SERÁ DE 20 mm.

3.- LAS SALIDAS PARA: ALUMBRADO EN TECHO O BRAQUETES Y CAJAS DE PASO SERÁN EN CAJAS DE F° G° OCTOGONALES DEL TIPO LIVIANO DE 0.635 mm. DE ESPESOR, Y DE 100x40 mm.

4.- LAS SALIDAS PARA INTERRUPTORES SIMPLES, TOMACORRIENTES, PULSADOR DE TIMBRE, ANTENAS DE TV, TELEFONOS EXTERNOS E INTERNOS SERÁN EN CAJAS DE F°G°LIVIANO DE 0.635 mm. DE ESPESOR Y 100x55x40 mm.

5.- LAS SALIDAS PARA FUEGOS Y CAJAS DE CAJAS DE F°G° PESADO DE 1.59 mm. DE ESPESOR DE 100x100x55 mm.

6.- LAS CAJAS DE PASE DE ALIMENTADORES DE TELÉFONOS, INTERCOMUNICADORES Y TELEVISIÓN SERÁN CUADRADAS DE F°G° DEL TIPO PESADO DE 1.59 mm. DE ESPESOR CON LAS DIMENSIONES INDICADAS EN LOS PLANOS.

7.- LOS INTERRUPTORES Y TOMACORRIENTES SERÁN DE 10A−220V. SIMILARES A LA SERIE MÁGIC DE Bticino CON TAPAS DE ALUMINIO ANODIZADO.

8.- EL TABLERO DE DISTRIBUCIÓN SERÁ DEL TIPO PARA EMPOTRAR EN GABINETE DE PLANCHA DE 1.59 mm. DE ESPESOR E INTERRUPTORES TERMODINAMICOS DE CAPACIDAD DE RUPTURA DE 10KA−220V.

9.- LAS SALIDAS PARA TOMACORRIENTES DONDE COINCIDAN MÁS DE TRES O CUATRO TUBOS SERÁN CON CAJAS CUADRADAS DE 100x100x55mm. CON TAPA DE UN GANG.
05. **CUADROS DE CARGAS.**

En este cuadro se deben indicar:

- Los circuitos eléctricos.
- La potencia instalada de cada circuito eléctrico.
- El factor de demanda de cada circuito eléctrico.
- La máxima demanda de cada circuito eléctrico.

CUADROS DE CARGAS: TD-1

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>P.I. (W)</th>
<th>F.D.</th>
<th>M.D. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMBRADO Y TOMACORRIENTES: 45.00 m²</td>
<td>1500</td>
<td>1,00</td>
<td>1500</td>
</tr>
<tr>
<td>ALUMBRADO Y TOMACORRIENTES: 37.85 m²</td>
<td>1000</td>
<td>1,00</td>
<td>1000</td>
</tr>
<tr>
<td>COCINA ELÉCTRICA</td>
<td>6000</td>
<td>1,00</td>
<td>6000</td>
</tr>
<tr>
<td>CALENTADOR ELÉCTRICO</td>
<td>1500</td>
<td>0,25</td>
<td>375</td>
</tr>
<tr>
<td>LAVADORA Y SECADORA ELÉCTRICA</td>
<td>3500</td>
<td>0,25</td>
<td>875</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13500 W.</td>
<td>-</td>
<td>9750 W.</td>
</tr>
</tbody>
</table>

CUADROS DE CARGAS: TSG

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>P.I. (W)</th>
<th>F.D.</th>
<th>M.D. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMBRADO: 15 x 100W = 1500W</td>
<td>1500</td>
<td>1,00</td>
<td>1500</td>
</tr>
<tr>
<td>TOMACORRIENTES: 12 x 165 W = 1980W</td>
<td>1980</td>
<td>1,00</td>
<td>1980</td>
</tr>
<tr>
<td>2 ELECTROBOMBAS 1HP c/u = 2 x 1746</td>
<td>1492</td>
<td>0,50</td>
<td>746</td>
</tr>
<tr>
<td>INTERCOMUNICADOR</td>
<td>300</td>
<td>1,00</td>
<td>300</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5272 W.</td>
<td>-</td>
<td>4526 W.</td>
</tr>
</tbody>
</table>

CUADROS DE CARGAS: RESUMEN

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>P.I. (W)</th>
<th>F.D.</th>
<th>M.D. (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARGA ELÉCTRICA 1 DEPARTAMENTO</td>
<td>13500 w.</td>
<td>1,00</td>
<td>13500</td>
</tr>
<tr>
<td>CARGA ELÉCTRICA 2 DEPARTAMENTOS</td>
<td>27000 w.</td>
<td>0,65</td>
<td>17550</td>
</tr>
<tr>
<td>CARGA ELÉCTRICA 2 DEPARTAMENTOS</td>
<td>27000 w.</td>
<td>0,40</td>
<td>10800</td>
</tr>
<tr>
<td>CARGA ELÉCTRICA 2 DEPARTAMENTOS</td>
<td>27000 w.</td>
<td>0,30</td>
<td>8100</td>
</tr>
<tr>
<td>T.S.G.</td>
<td>5272</td>
<td>0,75</td>
<td>3954</td>
</tr>
<tr>
<td>TOTAL</td>
<td>99772 W.</td>
<td>-</td>
<td>53904 W.</td>
</tr>
</tbody>
</table>
06. DIAGRAMAS UNIFILARES.

Estos diagramas representan a los tableros de distribución eléctrica.

Pueden ser para corriente trifásica o corriente monofásica.

En él se indican los circuitos que dependen del tablero de distribución eléctrica, así como:

- Secciones de los conductores.
- Diámetros de las tuberías.
- Interruptores termomagnéticos.
- Interruptores diferenciales.

DIAGRAMA UNIFILAR DEL T.D.
DIAGRAMA UNIFILAR: TD-O1

DIAGRAMA UNIFILAR: TSG
7. REDES DE ALUMBRADO.

Son los circuitos eléctricos que comprende de los centros de luz, braquetes e interruptores que tienen los diferentes ambientes de una edificación.

Es necesario la planificación de una iluminación adecuada en común acuerdo con el propietario y en el que se pueden presentar cualquiera de las dos situaciones siguientes:

- Las luminarias pueden ser colocadas en el centro del ambiente.
- Las luminarias se pueden colocar de acuerdo a la ubicación de los muebles y aparatos sanitarios.
8. REDES DE SALIDA DE FUERZA.

Son los circuitos eléctricos de los diferentes aparatos electrodomésticos que no usan la corriente eléctrica de los tomacorrientes monofásicos comunes.

Estos circuitos eléctricos deben tener conductores del sistema de puesta a tierra.

Por ejemplo:

- Cocina.
- Calentador.
- Lavadora.
- Secadora.
- Electro bomba.
- Intercomunicador.
9. REDES DE TOMACORRIENTES.

Son los circuitos eléctricos que sirve para tomar la corriente eléctrica en diferentes puntos en los ambientes de una edificación.

Estos circuitos eléctricos deben tener conductores del sistema de puesta a tierra.
10. SISTEMA DE PUESTA DE TIERRA.

Los circuitos eléctricos deben ser puestos a tierra con el fin de limitar la tensión que pudiera aparecer en el circuito resistivo o para limitar el potencial máximo respecto a tierra debido a su tensión normal.

VARILLA DE COBRE ELECTROLITICO DE 15mm² x 2.40m.

TIERRA VEGETAL COMPAC-
TADA Y MEZCLADA CON 5Kg DE THOR-CEL EN CAPAS DE 0.10m

R < 15 OHMS /ML
RESISTIVIDAD: 400 OHMS/ML
DETALLE DE SISTEMA DE PUESTA A TIERRA
ESC. 1/25
11. INSTALACIONES DE COMUNICACIONES.

Las redes de comunicaciones que tiene la edificación son las siguientes:

- Red de teléfono externo.
- Red de teléfono interno.
- Red de TV - cable.
12. REDES DE TELÉFONO EXTERNO.

La edificación debe estar comunicada con el exterior por lo tanto los ambientes tienen salidas para teléfono externo.

La ubicación de una o varias salidas está en función de la necesidad del propietario y del criterio del Ingeniero Electricista.

Se debe ubicar en un lugar donde existan las siguientes condiciones:

- Un lugar que tenga privacidad.
- Un lugar que no presente molestia alguna a la persona que está usando el teléfono.

La altura de la salida es de 0.40 m. o 1.10 m. sobre el nivel de piso terminado.
13. **REDES DE TELÉFONO INTERNO.**

La edificación debe estar comunicada interiormente.

Por lo tanto los ambientes tienen salidas para teléfonos internos conectados al intercomunicador que está ubicado en la puerta que da al exterior de la edificación.

La ubicación de una o varias salidas está en función de la necesidad del propietario y del criterio del Ingeniero Electricista.

Se debe ubicar en un lugar donde existan las siguientes condiciones:

- Un lugar donde siempre está presente una persona.
- Un lugar que no presente molestia alguna a la persona que está usando el teléfono.

La altura de la salida es de 1.40 m. sobre el nivel de piso terminado.
14. REDES DE TV - CABLE.

La edificación debe tener redes de TV - cable con conductores del tipo coaxial.

La ubicación de una o varias salidas está en función de la necesidad del propietario y del criterio del Ingeniero Electricista.

Se debe ubicar en un lugar donde existan las siguientes condiciones:

- Un lugar donde no interrumpa el tránsito de personas.
- Un lugar que no presente molestia alguna a la persona que está usando el televisor.

La altura de la salida es de 0.40 m. y/o 1.40 m. sobre el nivel de piso terminado.
15. DIAGRAMA DE MONTANTES.

Este diagrama indica el recorrido vertical de las tuberías y conductores y sus conexiones horizontales tanto en las redes de alumbrado, tomacorrientes, salidas de fuerza y comunicaciones.
16. DETALLES.

Es importante indicar los diferentes detalles que ayudan en los procedimientos constructivos.

Como por ejemplo:

- Detalle de empalmes en la caja octogonal.
- Cuadro de clave de alimentadores.
- Cuadro de claves de cajas.
- Detalle del banco de medidores.
- Detalle de las cajas cuadradas con tapa tipo gang.
- Detalle de las alturas referenciales de instalación de las salidas.
- Detalle de acometida aérea.

DETALLE DE EMPALMES EN CAJA OCTOGONAL
CLAVE DE ALIMENTADORES

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3–1x16mm2TW+1x10mm2(T) –Ø35mmPVC–P</td>
</tr>
<tr>
<td>B</td>
<td>3–1x6mm2TW+1x6mm2(T)–Ø25mmPVC–P</td>
</tr>
<tr>
<td>C</td>
<td>2–1x4mm2TW+1x4mm2(T)–Ø25mmPVC–P</td>
</tr>
<tr>
<td>D</td>
<td>2–1x2.5mm2TW+1x2.5mm2(T)–Ø20mmPVC–P</td>
</tr>
<tr>
<td>E</td>
<td>2–1x2.5mm2TW–Ø20mmPVC–P</td>
</tr>
<tr>
<td>F</td>
<td>1x10mm2(T)–Ø20mmPVC–P</td>
</tr>
</tbody>
</table>

CLAVE DE CAJAS

<table>
<thead>
<tr>
<th>Caja</th>
<th>Dimensiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100x100x50 mm.</td>
</tr>
<tr>
<td>2</td>
<td>150x150x100 mm.</td>
</tr>
<tr>
<td>3</td>
<td>200x200x100 mm.</td>
</tr>
<tr>
<td>4</td>
<td>250x250x100 mm.</td>
</tr>
<tr>
<td>5</td>
<td>300x300x150 mm.</td>
</tr>
</tbody>
</table>
DETALLE DE BANCO DE MEDIDORES

ESCALA 1/25
CAJA CUADRADA DE 100x100mm

TAPA TIPO UN GANG

CAJA CUADRADA DE 100x100mm

TAPA TIPO UN GANG

DETALLE DE TAPA TIPO GANG
ALTURAS REFERENCIALES DE INSTALACION DE SALIDAS

DETALLE DE ACOMETIDA AÉREA
GLOSARIO

- **ALAMBRE.**- Es el producto de cualquier sección maciza.

- **CABLE.**- Conductor con varios hilos trenzado.

- **CIRCUITO.**- Un conductor o sistema de conductores concebido para que a través de ellos pueda circular una corriente eléctrica.

- **CONDUCTOR.**- Un material, usualmente en forma de alambre, cable o barra capaz de conducir corriente eléctrica.

- **DUCTO.**- Una sola canalización cerrada que sirve como vía a conductores o cables.

- **ENERGIZADO.**- Eléctricamente conectado a una diferencia de potencial o eléctricamente cargado de modo que tenga un potencial contra tierra. Sinónimo: Vivo.

- **INTERRUPTOR AUTOMÁTICO.**- Un dispositivo de conexión y desconexión, capaz de transportar o interrumpir corrientes bajo condiciones normales de circuito y corrientes bajo condiciones anormales de una duración especificada tales como las corrientes bajo condiciones de falla.

- **PUESTO A TIERRA.**- Conectado a tierra o en contacto con ella o conectado a un cuerpo conductor que actúe como tierra.

- **SUMINISTRO.**- Conjunto de instalaciones que permiten la alimentación de la energía eléctrica en forma segura y que llega hasta el punto de entrega.

- **TENSIÓN.**- La diferencia de potencial eficaz entre dos conductores cualquiera o entre un conductor y la tierra.
I.º PISO

REDES DE ALUMBRADO
Y SALIDAS DE FUERZA
UBICACIÓN DEL TANQUE ELEVADO

ACOMETIDA AÉREA T/GENERO 300 mm PVC L.
ACOMETIDA AÉREA DE TV + CABLE 200 mm PVC L.

BAJA EL CONTROL DE BOMBAS

TANQUE ELEVADO
VOL=100m³
1º PISO

REDES DE TOMACORRIENTES Y COMUNICACIONES